本章主要包括
- scala集合操作图标
- spark的
standalone模式
安装部署(java, scala, hdfs环境配好的情况下)- 解压文件
- 修改配置文件
slaves
,spark-env.sh
,spark-default.conf
- 启动使用
sbin/start-all.sh
命令 - 测试使用
bin/spark-shell
进入交互式命令行
1. Scala集合操作
2. spark安装部署
spark有四种部署模式
- Local
- Standalone
- Yarn
- Mesos
2.1 standalone安装模式
- 安装jdk(略)
- 安装Scala(2.10.4)(略)
- 安装Hadoop 2.x(略)
- 安装Spark Standalone
- 解压
tar -zvxfspark-1.3.0-bin-2.5.0
- 配置环境变量
export SPARK_HOME=/opt/modules/spark-1.3.0-bin-2.5.0
- 配置文件
slaves
指定workers的服务器
zk1
spark-env.sh
#!/usr/bin/env bash
# This file is sourced when running various Spark programs.
# Copy it as spark-env.sh and edit that to configure Spark for your site.
JAVA_HOME=/usr/local/jdk
SCALA_HOME=/usr/local/scala
# Options read when launching programs locally with
# ./bin/run-example or ./bin/spark-submit
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public dns name of the driver program
# - SPARK_CLASSPATH, default classpath entries to append
HADOOP_CONF_DIR=/opt/.../etc/hadoop
# Options read by executors and drivers running inside the cluster
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public DNS name of the driver program
# - SPARK_CLASSPATH, default classpath entries to append
# - SPARK_LOCAL_DIRS, storage directories to use on this node for shuffle and RDD data
# - MESOS_NATIVE_JAVA_LIBRARY, to point to your libmesos.so if you use Mesos
# Options read in YARN client mode
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_EXECUTOR_INSTANCES, Number of workers to start (Default: 2)
# - SPARK_EXECUTOR_CORES, Number of cores for the workers (Default: 1).
# - SPARK_EXECUTOR_MEMORY, Memory per Worker (e.g. 1000M, 2G) (Default: 1G)
# - SPARK_DRIVER_MEMORY, Memory for Master (e.g. 1000M, 2G) (Default: 1G)
# - SPARK_YARN_APP_NAME, The name of your application (Default: Spark)
# - SPARK_YARN_QUEUE, The hadoop queue to use for allocation requests (Default: ‘default’)
# - SPARK_YARN_DIST_FILES, Comma separated list of files to be distributed with the job.
# - SPARK_YARN_DIST_ARCHIVES, Comma separated list of archives to be distributed with the job.
# Options for the daemons used in the standalone deploy mode
# - SPARK_MASTER_IP, to bind the master to a different IP address or hostname
# - SPARK_MASTER_PORT / SPARK_MASTER_WEBUI_PORT, to use non-default ports for the master
# - SPARK_MASTER_OPTS, to set config properties only for the master (e.g. "-Dx=y")
# - SPARK_WORKER_CORES, to set the number of cores to use on this machine
# - SPARK_WORKER_MEMORY, to set how much total memory workers have to give executors (e.g. 1000m, 2g)
# - SPARK_WORKER_PORT / SPARK_WORKER_WEBUI_PORT, to use non-default ports for the worker
# - SPARK_WORKER_INSTANCES, to set the number of worker processes per node
# - SPARK_WORKER_DIR, to set the working directory of worker processes
# - SPARK_WORKER_OPTS, to set config properties only for the worker (e.g. "-Dx=y")
# - SPARK_DAEMON_MEMORY, to allocate to the master, worker and history server themselves (default: 1g).
# - SPARK_HISTORY_OPTS, to set config properties only for the history server (e.g. "-Dx=y")
# - SPARK_SHUFFLE_OPTS, to set config properties only for the external shuffle service (e.g. "-Dx=y")
# - SPARK_DAEMON_JAVA_OPTS, to set config properties for all daemons (e.g. "-Dx=y")
# - SPARK_PUBLIC_DNS, to set the public dns name of the master or workers
SPARK_MASTER_IP=zk1
SPARK_MASTER_PORT=7077
SPARK_MASTER_WEBUI_PORT=8080
SPARK_WORKER_CORES=1
SPARK_WORKER_MEMORY=2g
SPARK_WORKER_PORT=7077
SPARK_WORKER_WEBUI_PORT=8081
SPARK_WORKER_INSTANCES=1
# Generic options for the daemons used in the standalone deploy mode
# - SPARK_CONF_DIR Alternate conf dir. (Default: ${SPARK_HOME}/conf)
# - SPARK_LOG_DIR Where log files are stored. (Default: ${SPARK_HOME}/logs)
# - SPARK_PID_DIR Where the pid file is stored. (Default: /tmp)
# - SPARK_IDENT_STRING A string representing this instance of spark. (Default: $USER)
# - SPARK_NICENESS The scheduling priority for daemons. (Default: 0)
- 启动
可以通过--help查看options
使用sbin/start-all.sh
启动
- 验证
-
jps
-
Web UI
zk1:8080
- 进入交互式界面使用
bin/shpark-shell
可以通过
--help
查看命令帮助
通过--master
指定运行的master
- 通过下面命令进行测试
val fd = sc.testFile("hdfs://zk1:8020/test_input")
fd.collect