PyTorch常用的初始化和正则

原文: https://www.pytorchtutorial.com/pytorch-goodies/

模型统计数据(Model Statistics)

统计参数总数量
num_params = sum(param.numel() for param in model.parameters())

参数初始化(Weight Initialization)

PyTorch 中参数的默认初始化在各个层的 reset_parameters() 方法中。例如:nn.Linear 和 nn.Conv2D,都是在 [-limit, limit] 之间的均匀分布(Uniform distribution),其中 limit 是 1. / sqrt(fan_in) ,fan_in 是指参数张量(tensor)的输入单元的数量

下面是几种常见的初始化方式。

Xavier Initialization

Xavier初始化的基本思想是保持输入和输出的方差一致,这样就避免了所有输出值都趋向于0。这是通用的方法,适用于任何激活函数。

# 默认方法
for m in model.modules():
    if isinstance(m, (nn.Conv2d, nn.Linear)):
        nn.init.xavier_uniform(m.weight)

也可以使用 gain 参数来自定义初始化的标准差来匹配特定的激活函数:

for m in model.modules():
    if isinstance(m, (nn.Conv2d, nn.Linear)):
        nn.init.xavier_uniform(m.weight(), gain=nn.init.calculate_gain(\\'relu\\'))

参考资料:

He et. al Initialization

He initialization的思想是:在ReLU网络中,假定每一层有一半的神经元被激活,另一半为0。推荐在ReLU网络中使用。

# he initialization
for m in model.modules():
    if isinstance(m, (nn.Conv2d, nn.Linear)):
        nn.init.kaiming_normal(m.weight, mode=\\'fan_in\\')

正交初始化(Orthogonal Initialization)

主要用以解决深度网络下的梯度消失、梯度爆炸问题,在RNN中经常使用的参数初始化方法

for m in model.modules():
    if isinstance(m, (nn.Conv2d, nn.Linear)):
        nn.init.orthogonal(m.weight)

Batchnorm Initialization

在非线性激活函数之前,我们想让输出值有比较好的分布(例如高斯分布),以便于计算梯度和更新参数。Batch Normalization 将输出值强行做一次 Gaussian Normalization 和线性变换:

image.png
for m in model:
    if isinstance(m, nn.BatchNorm2d):
        nn.init.constant(m.weight, 1)
        nn.init.constant(m.bias, 0)

参数正则化(Weight Regularization)

L2/L1 Regularization

机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,称作L1正则化和L2正则化,或者L1范数和L2范数。

L1 正则化和 L2 正则化可以看做是损失函数的惩罚项。所谓 “惩罚” 是指对损失函数中的某些参数做一些限制。

L1 正则化是指权值向量 w 中各个元素的绝对值之和,通常表示为 ||w||1
L2 正则化是指权值向量 w 中各个元素的平方和然后再求平方根,通常表示为 ||w||2
下面是L1正则化和L2正则化的作用,这些表述可以在很多文章中找到。

L1 正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
L2 正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合

  • L2 正则化的实现方法:
reg = 1e-6
l2_loss = Variable(torch.FloatTensor(1), requires_grad=True)
for name, param in model.named_parameters():
    if \'bias\' not in name:
        l2_loss = l2_loss   (0.5 * reg * torch.sum(torch.pow(W, 2)))
  • L1 正则化的实现方法:
reg = 1e-6
l1_loss = Variable(torch.FloatTensor(1), requires_grad=True)
for name, param in model.named_parameters():
    if \'bias\' not in name:
        l1_loss = l1_loss   (reg * torch.sum(torch.abs(W)))
  • Orthogonal Regularization
reg = 1e-6
orth_loss = Variable(torch.FloatTensor(1), requires_grad=True)
for name, param in model.named_parameters():
    if \'bias\' not in name:
        param_flat = param.view(param.shape[0], -1)
        sym = torch.mm(param_flat, torch.t(param_flat))
        sym -= Variable(torch.eye(param_flat.shape[0]))
        orth_loss = orth_loss   (reg * sym.sum())
  • Max Norm Constraint
    简单来讲就是对 w 的指直接进行限制。
ef max_norm(model, max_val=3, eps=1e-8):
    for name, param in model.named_parameters():
        if \'bias\' not in name:
            norm = param.norm(2, dim=0, keepdim=True)
            desired = torch.clamp(norm, 0, max_val)
            param = param * (desired / (eps   norm))
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容