无标题文章

傅里叶变换的本质是什么?

傅里叶变换的公式为

可以把傅里叶变换也成另外一种形式:

可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三角函数的之间的内积为0,只有频率相等的三角函数做内积时,才不为0。

下面从公式解释下傅里叶变换的意义

因为傅里叶变换的本质是内积,所以f(t)和

求内积的时候,只有f(t)中频率为

的分量才会有内积的结果,其余分量的内积为0。可以理解为f(t)在

上的投影,积分值是时间从负无穷到正无穷的积分,就是把信号每个时间在

的分量叠加起来,可以理解为f(t)在

上的投影的叠加,叠加的结果就是频率为

的分量,也就形成了频谱。

傅里叶逆变换的公式为

下面从公式分析下傅里叶逆变换的意义

傅里叶逆变换就是傅里叶变换的逆过程,在

求内积的时候,

只有t时刻的分量内积才会有结果,其余时间分量内积结果为0,同样积分值是频率从负无穷到正无穷的积分,就是把信号在每个频率在t时刻上的分量叠加起来,叠加的结果就是f(t)在t时刻的值,这就回到了我们观察信号最初的时域。

对一个信号做傅里叶变换,然后直接做逆变换,这样做是没有意义的,在傅里叶变换和傅里叶逆变换之间有一个滤波的过程。将不要的频率分量给滤除掉,然后再做逆变换,就得到了想要的信号。比如信号中掺杂着噪声信号,可以通过滤波器将噪声信号的频率给去除,再做傅里叶逆变换,就得到了没有噪声的信号。

优点:频率的定位很好,通过对信号的频率分辨率很好,可以清晰的得到信号所包含的频率成分,也就是频谱。

缺点:因为频谱是时间从负无穷到正无穷的叠加,所以,知道某一频率,不能判断,该频率的时间定位。不能判断某一时间段的频率成分。

例子:

平稳信号:x(t)=cos(2*pi*5*t)+cos(2*pi*10*t)+cos(2*pi*20*t)+cos(2*pi*50*t)

傅里叶变换的结果:

由于信号是平稳信号,每处的频率都相等,所以看不到傅里叶变换的缺点。

对于非平稳信号:信号是余弦信号,仍然有四个频率分量

傅里叶变换的结果:

由上图看出知道某一频率,不能判断,该频率的时间定位。不能判断某一时间段的频率成分。

短时傅里叶变换

傅里叶变换存在着严重的缺点,就是不能实现时频联合分析。傅里叶变换要从负无穷计算到正无穷,这在实际使用当中,跟即时性分析会有很大的矛盾。根据这一缺点,提出了短时傅里叶变换。后来的时间—频率分析也是以短时傅里叶变换为基础提出的。

为了弥补傅里叶变换的缺陷,给信号加上一个窗函数,对信号加窗后计算加窗后函数的傅里叶变换,加窗后得到时间附近的很小时间上的局部谱,窗函数可以根据时间的位置变化在整个时间轴上平移,利用窗函数可以得到任意位置附近的时间段频谱,实现了时间局域化。

短时傅里叶变换的公式为:

在时域用窗函数去截信号,对截下来的局部信号作傅立叶变换,即在t时刻得该段信号得傅立叶变换,不断地移动t,也即不断地移动窗函数的中心位置,即可得到不同时刻的傅立叶变换,这样就得到了时间—频率分析。

短时傅里叶变换的本质和傅里叶变换一样都是内积,只不过用

代替了

,实现了局部信号的频谱分析。

短时傅里叶变换的另一种形式:

该式子表明在时域里

加窗函数

,得出在频域里对

加窗

优点:在傅里叶变换的基础上,增加了窗函数,就实现了时间—频率分析。

缺点:短时傅里叶变换使用一个固定的窗函数,窗函数一旦确定了以后,其形状就不再发生改变,短时傅里叶变换的分辨率也就确定了。如果要改变分辨率,则需要重新选择窗函数。短时傅里叶变换用来分析分段平稳信号或者近似平稳信号犹可,但是对于非平稳信号,当信号变化剧烈时,要求窗函数有较高的时间分辨率;而波形变化比较平缓的时刻,主要是低频信号,则要求窗函数有较高的频率分辨率。短时傅里叶变换不能兼顾频率与时间分辨率的需求。测不准原理告诉我们,不可能在时间和频率两个空间同时以任意精度逼近被测信号,因此就必须在信号的分析上对时间或者频率的精度做取舍。短时傅里叶变换受到测不准原理的限制,所以短时傅里叶变换窗函数的时间与频率分辨率不能同时达到最优。在实际使用时,根据实际情况选用合适的窗函数。

例子:

原始信号:信号是余弦信号,有四个频率分量.

当窗函数选为:

时,短时傅里叶变换为:

由上图可以看出,时域的分辨率比较好,但是频率出现一定宽度的带宽,也就是说频率分辨率差;

当窗函数选择为:

时,短时傅里叶变换为:

由上图可以看出,频率的分辨率比较好,但是时域分辨率差,有点接近傅里叶变换。有上图可以看到短时傅里叶变换的缺点。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 198,082评论 5 464
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,231评论 2 375
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 145,047评论 0 327
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,977评论 1 268
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,893评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 47,014评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,976评论 3 388
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,605评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,888评论 1 293
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,906评论 2 314
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,732评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,513评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,980评论 3 301
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,132评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,447评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,027评论 2 343
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,232评论 2 339

推荐阅读更多精彩内容

  • 一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚...
    constant007阅读 4,370评论 1 10
  • 第5章 引用类型(返回首页) 本章内容 使用对象 创建并操作数组 理解基本的JavaScript类型 使用基本类型...
    大学一百阅读 3,198评论 0 4
  • 转至元数据结尾创建: 董潇伟,最新修改于: 十二月 23, 2016 转至元数据起始第一章:isa和Class一....
    40c0490e5268阅读 1,673评论 0 9
  • 目录 [TOC] 引言 量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来...
    雷达熊阅读 960评论 0 2
  • 其实我觉得,这几年北方雪少也暖和,小的时候看鹅毛大雪根本不用跑东北,看树挂也不用去雾凇岛,房沿下挂着冰柱也是再正常...
    嘻呦阅读 295评论 0 0