1.1 简介
LinkedBlockingQueue是一个由链表结构组成的有界阻塞队列,此队列是FIFO(先进先出)的顺序来访问的,它由队尾插入后再从队头取出或移除,其中队列的头部是在队列中时间最长的元素,队列的尾部是在队列中时间最短的元素。在LinkedBlockingQueue类中分别用2个不同的锁takeLock、putLock来保护队头和队尾操作。如下图所示:
1.2 类图
1.3 源码分析
1.3.1 属性与链表节点类
//链表节点类,next指向下一个节点。如果下一个节点时null表示没有节点了。
static class Node<E> {
E item;
Node<E> next;
Node(E x) { item = x; }
}
// 最大容量上限,默认是 Integer.MAX_VALUE
private final int capacity;
// 当前元素数量,这是个原子类。
private final AtomicInteger count = new AtomicInteger(0);
// 头结点
private transient Node<E> head;
// 尾结点
private transient Node<E> last;
// 队头访问锁
private final ReentrantLock takeLock = new ReentrantLock();
// 队头访问等待条件、队列
private final Condition notEmpty = takeLock.newCondition();
// 队尾访问锁
private final ReentrantLock putLock = new ReentrantLock();
// 队尾访问等待条件、队列
private final Condition notFull = putLock.newCondition();
使用原子类AtomicInteger是因为读写分别使用了不同的锁,但都会访问这个属性来计算队列中元素的数量,所以它需要是线程安全的。关AtomicInteger详细请看我的这一篇文章:【Java并发编程】深入分析AtomicInteger(二)
1.3.2 offer操作
public boolean offer(E e) {
if (e == null) throw new NullPointerException();
final AtomicInteger count = this.count;
//当队列满时,直接返回了false,没有被阻塞等待元素插入
if (count.get() == capacity)
return false;
int c = -1;
Node<E> node = new Node(e);
//开启队尾保护锁
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
if (count.get() < capacity) {
enqueue(node);
//原则计数类
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
}
} finally {
//释放锁
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
return c >= 0;
}
//在持有锁下指向下一个节点
private void enqueue(Node<E> node) {
// assert putLock.isHeldByCurrentThread();
// assert last.next == null;
last = last.next = node;
}
1.3.3 put操作
//put 操作把指定元素添加到队尾,如果没有空间则一直等待。
public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
// Note: convention in all put/take/etc is to preset local var
// holding count negative to indicate failure unless set.
//注释:在所有的 put/take/etc等操作中变量c为负数表示失败,>=0表示成功。
int c = -1;
Node<E> node = new Node(e);
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
/*
* Note that count is used in wait guard even though it is
* not protected by lock. This works because count can
* only decrease at this point (all other puts are shut
* out by lock), and we (or some other waiting put) are
* signalled if it ever changes from capacity. Similarly
* for all other uses of count in other wait guards.
*/
/*
* 注意,count用于等待监视,即使它没有用锁保护。这个可行是因为
* count 只能在此刻(持有putLock)减小(其他put线程都被锁拒之门外),
* 当count对capacity发生变化时,当前线程(或其他put等待线程)将被通知。
* 在其他等待监视的使用中也类似。
*/
while (count.get() == capacity) {
notFull.await();
}
enqueue(node);
c = count.getAndIncrement();
// 还有可添加空间则唤醒put等待线程。
if (c + 1 < capacity)
notFull.signal();
} finally {
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
}
1.3.4 take操作
//弹出队头元素,如果没有会被阻塞直到元素返回
public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) {
notEmpty.await();//没有元素一直阻塞
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1)//如果还有可获取元素,唤醒等待获取的线程。
notEmpty.signal();
} finally {
//拿到元素后释放锁
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
//在持有锁下返回队列队头第一个节点
private E dequeue() {
// assert takeLock.isHeldByCurrentThread();
// assert head.item == null;
Node<E> h = head;
Node<E> first = h.next;
h.next = h; // help GC
//出队后的节点作为头节点并将元素置空
head = first;
E x = first.item;
first.item = null;
return x;
}
1.3.5 remove操作
//移除指定元素。
public boolean remove(Object o) {
if (o == null) return false;
//对两把锁加锁
fullyLock();
try {
for (Node<E> trail = head, p = trail.next;
p != null;
trail = p, p = p.next) {
if (o.equals(p.item)) {
unlink(p, trail);
return true;
}
}
return false;
} finally {
fullyUnlock();
}
}
//p是移除元素所在节点,trail是移除元素的上一个节点
void unlink(Node<E> p, Node<E> trail) {
// assert isFullyLocked();
// p.next is not changed, to allow iterators that are
// traversing p to maintain their weak-consistency guarantee.
p.item = null;
//将trail下一个节点指向p的下一个节点
trail.next = p.next;
if (last == p)
last = trail;
if (count.getAndDecrement() == capacity)
notFull.signal();
}
void fullyLock() {
putLock.lock();
takeLock.lock();
}
//释放锁时确保和加锁顺序一致
void fullyUnlock() {
takeLock.unlock();
putLock.unlock();
}
注意,锁的释放顺序与加锁顺序是相反的。
作者:小毛驴,一个Java游戏服务器开发者 原文地址:https://liulongling.github.io/