关于层次聚类算法的python实现

from scipy.cluster import hierarchy

0.层次聚类的概念

层次聚类和k-means一样都是很常用的聚类方法。层次聚类是对群体的划分,最终将样本划分为树状的结构。他的基本思路是每个样本先自成一类,然后按照某种规则进行合并,直到只有一类或者某一类的样本只有一个点。层次聚类又分为自底而上的聚合层次聚类和自顶而下的分裂层次聚类。

0.1 聚合层次聚类

每一个点初始为1类,得到N(样本点个数)类,计算每一类之间的距离,计算方法有很多,具体可以参考距离的计算方法。聚合层次聚类方法的终止条件是所有样本点都处于同一类了,或者两类之间的距离超过设置的某个阈值。大多数层次聚类都是聚合层次聚类。

0.2 分裂层次聚类

和聚合层次聚类是反着的,属于自上而下的一种聚类方法。刚开始的时候所有的样本点都位于同一类,然后一步步划分,终止条件是所有的样本点都位于单独的一类,或者两类之间的距离超过设置的某个阈值。
下面这个图可以比较好的说明这个过程:


层次聚类的两种方法

1.凝聚层次聚类算法步骤

1.1 算法过程

1)N个样本单独成类,G1(0)、G2(0)、G3(0)、……、GN(0),0代表初始状态。
2)更新距离矩阵D(n),找出D(n)中最小值,把对应的两类合并为1类。
3)更新距离矩阵D(n+1),重复步骤2-3。

  1. 当两类之间的最小距离小于给定的阈值或者所有样本都单独成类的时候,结束算法。

1.2算法案例

有个老师带了五个学生,想给学生分组,让他们分组学习,采用层次聚类来对学生进行聚类,基础数据如下图。


学生基础数据

先来算距离D(0),就采用欧式距离就好了。


初始距离矩阵

找到最小的那两个合并为1类。
合并后的新数据

然后计算更新后的距离D(1)


合并的后新距离

以后的以此类推:
聚类的整体过程

我们看到其实124是一类,35是一类。
画出图来就是下面这个格式:
聚类结果

3.Python处理层次聚类的包

用的是在scipy.cluster里的hierarchy方法,下面来看代码,支持hierarchical clustering 和 agglomerative clustering。
首先来看一些基本函数的用法

  • linkage
    scipy.cluster.hierarchy.linkage(data,method = 'single')
    method 参数是类距离的计算公式
    singele 两个类之间最短的点的距离
    complete 两个类之间最长距离的点的距离
    centroid 两个类所有点的中点的距离
  • pdist计算样本点之间的两两距离
    scipy.cluster.hierarchy.distance.pdist(data, metric='euclidean')
    metric参数是求距离的方法,默认是欧氏距离,可选的还有:
    ‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘dice’, ‘euclidean’, ‘hamming’, ‘jaccard’, ‘jensenshannon’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’
    关于求距离的函数我可能还会再更一篇文章,感兴趣的朋友可以等一下。笔者之前算字符相似度自己还写了一个杰尔卡德相似度,现在看看真实太费事了。
  • dendrogram(linkage)
    scipy.cluster.hierarchy.dendrogram(linkage),这个函数是画图用的。
import numpy
import pandas
from sklearn import datasets
import scipy.cluster.hierarchy as hcluster
import scipy
#iris = datasets.load_iris()
#data = iris.data
#target = iris.target
points=scipy.randn(20,4)  
# Compute and plot first dendrogram.
linkage = hcluster.linkage(points, method='centroid')
hcluster.dendrogram(linkage,  leaf_font_size=10.)
p = hcluster.fcluster( linkage,  3, criterion='maxclust')

聚类结果如下图所示:


聚类结果

以上就是层次聚类的简单应用,当然有不同的需求可以继续探索一些函数的参数,这个方法还是很好用的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345

推荐阅读更多精彩内容