区块链共识机制:POW、POS 、DPOS、PBFT、BFT

• POW是工作量证明机制. 类似于按劳分配。
• POS 股权证明,持有股票越多,权益越大。
• DPOS 授权股权证明机制,类似于董事会. 董事会成员数量有限, 由大家选举产生,被选中的董事会成员可以行使权利。

POW:Proof of Work,工作量证明

• POW工作量证明是比特币在Block的生成过程中使用的,可以说是最原始的区块链共识算法了。
• 从去中心化账本系统的角度看,每个加入这个系统的节点都要保存一份完整的账本,但每个节点却不能同时记账,因为节点处于不同的环境,接收到不同的信息,如果同时记账的话,必然会导致账本的不一致,造成混乱。因此,需要有共识来达成哪个节点有权记账。比特币区块链通过竞争记账的方式解决去中心化的记账系统的一致性问题, 即以每个节点的计算能力即“算力”来竞争记账权的机制。 
• 比特币在Block的生成过程中使用了POW机制,一个符合要求的Block Hash由N个前导零构成,零的个数取决于网络的难度值。要得到合理的Block Hash需要经过大量尝试计算,计算时间取决于机器的哈希运算速度。当某个节点提供出一个合理的Block Hash值,说明该节点确实经过了大量的尝试计算,当然,并不能得出计算次数的绝对值,因为寻找合理hash是一个概率事件。当节点拥有占全网n%的算力时,该节点即有n/100的概率找到Block Hash。

POS:Proof of Stake,股权证明

• PoS类似于财产储存在银行,这种模式会根据你持有数字货币的量和时间,分配给你相应的利息。
• 简单来说,就是一个根据你持有货币的量和时间,给你发利息的一个制度,在股权证明POS模式下,有一个名词叫币龄,每个币每天产生1币龄,比如你持有100个币,总共持有了30天,那么,此时你的币龄就为3000,这个时候,如果你发现了一个POS区块,你的币龄就会被清空为0。你每被清空365币龄,你将会从区块中获得0.05个币的利息(假定利息可理解为年利率5%),那么在这个案例中,利息 = 3000 * 5% / 365 = 0.41个币。
• POS区块的产生具有随机性,这一过程与POW相似。但有一个重要的区别在于,(POS)随机散列运算是在一个有限制的空间里完成的(具体来说为1 hash/未消费钱包的输出*秒),而不是象POW那样在无限制的空间里寻找,因此无需大量的能源消耗。
• PoS机制虽然考虑到了PoW的不足,但依据权益结余来选择,会导致首富账户的权力更大,有可能支配记账权。股份授权证明机制(Delegated Proof of Stake,DPoS)的出现正是基于解决PoW机制和PoS机制的这类不足。

DPoS:Delegated Proof of Stake,授权权益证明

• DPOS与POS类似,可以理解为POS的升级版,DPOS与POS原理相同,只是选了一些“人大代表”。BTS社区最先提出了DPOS机制,EOS也是采用了DPOS机制。与POS的主要区别在于节点选举若干代理人,由代理人验证和记账。类似于董事会投票,持币者投出一定数量的超级节点,代理他们进行验证和记账。也就是说成为超级节点就等于能够成为“人大代表”拥有更多的权益。
• DPoS充分利用了持股人的投票,以公平民主的方式达成共识,他们投票选出的N个见证人,可以视为N个矿池,而这N个矿池彼此的权利是完全相等的。持股人可以随时通过投票更换这些见证人(矿池),只要他们提供的算力不稳定,计算机宕机,或者试图利用手中的权力作恶。

PBFT:Practical Byzantine Fault Tolerance,拜占庭容错

PBFT算法的运作步骤为:
(1)取一个副本作为主节点,其他的副本作为备份;
(2)用户端向主节点发送使用服务操作的请求;
(3)主节点通过广播将请求发送给其他副本;
(4)所有副本执行请求并将结果发回用户端;
(5) 用户端需要等待F+1个不同副本节点发回相同的结果,作为整个操作的最终结果。

• 该算法是Miguel Castro (卡斯特罗)和Barbara Liskov(利斯科夫)在1999年提出来的,解决了原始拜占庭容错算法效率不高的问题,将算法复杂度由指数级降低到多项式级,使得拜占庭容错算法在实际系统应用中变得可行。
• PBFT是一种状态机副本复制算法,即服务作为状态机进行建模,状态机在分布式系统的不同节点进行副本复制。每个状态机的副本都保存了服务的状态,同时也实现了服务的操作。将所有的副本组成的集合使用大写字母R表示,使用0到|R|-1的整数表示每一个副本。为了描述方便,通常假设故障节点数为m个,整个服务节点数为|R|=3m+1个,这里m是有可能失效的副本的最大个数。尽管可以存在多于3m+1个副本,但是额外的副本除了降低性能之外不能提高可靠性。

• PBFT算法由于每个副本节点都需要和其他节点进行P2P的共识同步,因此随着节点的增多,性能会下降的很快,但是在较少节点的情况下可以有不错的性能,并且分叉的几率很低。PBFT主要用于联盟链,但是如果能够结合类似DPOS这样的节点代表选举规则的话也可以应用于公联,并且可以在一个不可信的网络里解决拜占庭容错问题,TPS应该是远大于POW的。
• PBFT能够保证活性和安全性的前提下提供了(n-1)/3的容错性。在分布式计算上,不同的计算机透过讯息交换,尝试达成共识。拜占庭将军问题就根据错误计算机的数量,寻找可能的解决办法,这无法找到一个绝对的答案,但只可以用来验证一个机制的有效程度。

BFT:Byzantine Fault Tolerance,拜占庭算法

• 拜占庭算法(BFT)是一类分布式计算领域的容错技术,拜占庭容错来源于拜占庭将军问题,拜占庭将军问题是Leslie Lamport(2013年的图灵讲得主)用来为描述分布式系统一致性问题(Distributed Consensus)在论文中抽象出来一个著名的例子。
• Lamport 对拜占庭将军的问题的研究表明,当 n > 3m 时,即叛徒的个数 m 小于将军总数的 n 的 1/3 时,通过口头同步通信(假设通信是可靠的),可以构造同时满足“一致性”和“正确性”的解决方法,即将军们可以达成一致的命令
• 安全性:任何已经完成的请求都不会被更改,它可以在以后请求看到。在区块链系统中,可以理解为,已经生成的账本不可篡改,并且可以被节点随时查看。
• 活性:可以接受并且执行非拜占庭客户端的请求,不会被任何因素影响而导致非拜占庭客户端的请求不能执行。在区块链系统中,可以理解为,系统需要持续生成区块,为用户记账,这主要靠挖矿的激励机制来保证。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,348评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,122评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,936评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,427评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,467评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,785评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,931评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,696评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,141评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,483评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,625评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,291评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,892评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,741评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,977评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,324评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,492评论 2 348

推荐阅读更多精彩内容