Python回归预测建模实战-多项式回归预测房价(附源码和实现效果)

机器学习在预测方面的应用,根据预测值变量的类型可以分为分类问题(预测值是离散型)和回归问题(预测值是连续型),前面我们介绍了机器学习建模处理了分类问题(具体见之前的文章),接下来我们以波斯顿房价数据集为例,做一个回归预测系列的建模文章。

实现功能:

特征与目标之间是非线性关系,需使用多项式回归,scikit-learn对多项式回归没有直接的方法,而是在数据预处理模块sklearn.preprocessing提供了PolynomialFeatures()类,该类将数据集变换为具有高次项特征的新数据集,将原始问题转化为线性回归问题,再使用线性回归方法对转化后的数据集进行训练,从而间接地进行多项式回归分析。

实现代码:

from sklearn.linear_modelimport LinearRegression

from sklearn.datasetsimport load_boston

import pandasas pd

import matplotlib.pyplotas plt

from sklearn.preprocessingimport PolynomialFeatures

import seabornas sns

# 加载数据集

boston=load_boston()

df=pd.DataFrame(boston.data,columns=boston.feature_names)

df['target']=boston.target

#查看数据项

features=df[boston.feature_names]

target=df['target']

#数据集划分

split_num=int(len(features)*0.8)

X_train=features[:split_num]

Y_train=target[:split_num]

X_test=features[split_num:]

Y_test=target[split_num:]

# 多项式回归建模预测

boston_poly=PolynomialFeatures(2)

boston_poly.fit(X_train)

X_train2=boston_poly.transform(X_train)

print('原始数据集X的形状为:',X_train.shape)

print('X转换为X2后的形状为:',X_train2.shape)

X_test2=boston_poly.transform(X_test)

lin_reg=LinearRegression().fit(X_train2,Y_train)

y_reg_pred=lin_reg.predict(X_test2)

# 可视化部分

sns.set(font_scale=1.2)

plt.rcParams['font.sans-serif']='SimHei'

plt.rcParams['axes.unicode_minus']=False

plt.rc('font',size=14)

plt.plot(list(range(0,len(X_test))),Y_test,marker='o')

plt.plot(list(range(0,len(X_test))),y_reg_pred,marker='*')

plt.legend(['真实值','预测值'])

plt.title('Boston房价多项式回归预测值与真实值的对比')

plt.show()

实现效果:

本人读研期间发表5篇SCI数据挖掘相关论文,会不定期分享一些关于python机器学习、深度学习、数据挖掘基础知识与案例,致力于以最简单的方式理解和学习它们,欢迎关注一起交流讨论。

关注订阅号(数据杂坛)获取相关数据集和源码,了解更多

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容