streaming容错机制

实时流式处理系统是7*24小时运行的,同时可以从各种同时可以从各种各样的系统错误中恢复,在设计之处,Spark Streaing就支持driver和worker节点的错误恢复。

worker容错:

     streaming构建在spark之上,spark在集群的worker上设计了容错性,streaming的worker容错机制和spark的是一样的,Spark Streaming应用的高可用性要求应用的driver进程也要有容错性,它是应用的主要进程用于协调所有的worker节点,因为用户应用的计算模式是可变的导致driver的容错性非常棘手,Spark Streaming会对实时流中的每一批数据进行运行同样的Spark计算,这样就可以定期的保存应用的状态到一个可靠的存储中,driver重启的时候恢复这些状态。

driver容错:依赖WAL

WAL(write ahead logs)使用在文件系统和数据库中用于数据操作的持久性,先把数据写到一个持久化的日志中,然后对数据做操作,如果操作过程中系统挂了,恢复的时候可以重新读取日志文件再次进行操作。

启动WAL需要做如下的配置

1:给streamingContext设置checkpoint的目录,该目录必须是HADOOP支持的文件系统,用来保存WAL和做Streaming的checkpoint

2:spark.streaming.receiver.writeAheadLog.enable 设置为true

          当WAL被启动了以后,所有的接收器接收的数据可以很稳定的恢复,推荐的内存备份可以关闭了(给输入流设置合适的持久化级别),因为WAL保存在可容错的文件系统上,数据已经备份了。此外,如果想要恢复缓冲的数据,必须使用支持应答的数据源(flume,kafka,kinses)。 当数据存储到日志以后那些支持应答接收器可以向数据源确认。内置的flume和kafka接收器已经实现了这些功能。最后,值得注意的是WAL开启了以后会减少Spark Streaming处理数据的吞吐,因为所有接收的数据会被写到到容错的文件系统上,这样文件系统的吞吐和网络带宽将成为瓶颈。可以通过添加更多接收器或使用更好的软件。

实现细节

下面讲解下WAL的工作原理。过一下Spark Streaming的架构

当一个Spark Streaming应用启动了(例如driver启动), 相应的StreamingContext使用SparkContet去启动receiver,receiver是一个长时间执行的作业,这些接收器接收并保存这些数据到Spark的executor进程的内存中,这些数据的生命周期如下图所示


1:蓝色的箭头表示接收的数据,接收器把数据流打包成块,存储在executor的内存中,如果开启了WAL,将会把数据写入到存在容错文件系统的日志文件中

2:青色的箭头表示提醒driver, 接收到的数据块的元信息发送给driver中的StreamingContext, 这些元数据包括:executor内存中数据块的引用ID和日志文件中数据块的偏移信息

3:红色箭头表示处理数据,每一个批处理间隔,StreamingContext使用块信息用来生成RDD和jobs.  SparkContext执行这些job用于处理executor内存中的数据块

4:黄色箭头表示checkpoint这些计算,以便于恢复。流式处理会周期的被checkpoint到文件中


当一个失败的driver重启以后,恢复流程如下


1:黄色的箭头用于恢复计算,checkpointed的信息是用于重启driver,重新构造上下文和重启所有的receiver

2:  青色箭头恢复块元数据信息,所有的块信息对已恢复计算很重要

3:重新生成未完成的job(红色箭头),会使用到2恢复的元数据信息

4:读取保存在日志中的块(蓝色箭头),当job重新执行的时候,块数据将会直接从日志中读取,

5:重发没有确认的数据(紫色的箭头)。缓冲的数据没有写到WAL中去将会被重新发送。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容