使用matplotlib进行数据可视化

###########################################
# Suppress matplotlib user warnings
# Necessary for newer version of matplotlib
import warnings
warnings.filterwarnings("ignore", category = UserWarning, module = "matplotlib")
#
# Display inline matplotlib plots with IPython
from IPython import get_ipython
get_ipython().run_line_magic('matplotlib', 'inline')
###########################################

import matplotlib.pyplot as plt
import matplotlib.cm as cm
import pandas as pd
import numpy as np

def pca_results(good_data, pca):
    '''
    Create a DataFrame of the PCA results
    Includes dimension feature weights and explained variance
    Visualizes the PCA results
    '''

    # Dimension indexing
    dimensions = dimensions = ['Dimension {}'.format(i) for i in range(1,len(pca.components_)+1)]

    # PCA components
    components = pd.DataFrame(np.round(pca.components_, 4), columns = list(good_data.keys()))
    components.index = dimensions

    # PCA explained variance
    ratios = pca.explained_variance_ratio_.reshape(len(pca.components_), 1)
    variance_ratios = pd.DataFrame(np.round(ratios, 4), columns = ['Explained Variance'])
    variance_ratios.index = dimensions

    # Create a bar plot visualization
    fig, ax = plt.subplots(figsize = (14,8))

    # Plot the feature weights as a function of the components
    components.plot(ax = ax, kind = 'bar');
    ax.set_ylabel("Feature Weights")
    ax.set_xticklabels(dimensions, rotation=0)


    # Display the explained variance ratios
    for i, ev in enumerate(pca.explained_variance_ratio_):
        ax.text(i-0.40, ax.get_ylim()[1] + 0.05, "Explained Variance\n          %.4f"%(ev))

    # Return a concatenated DataFrame
    return pd.concat([variance_ratios, components], axis = 1)

def cluster_results(reduced_data, preds, centers, pca_samples):
    '''
    Visualizes the PCA-reduced cluster data in two dimensions
    Adds cues for cluster centers and student-selected sample data
    '''

    predictions = pd.DataFrame(preds, columns = ['Cluster'])
    plot_data = pd.concat([predictions, reduced_data], axis = 1)

    # Generate the cluster plot
    fig, ax = plt.subplots(figsize = (14,8))

    # Color map
    cmap = cm.get_cmap('gist_rainbow')

    # Color the points based on assigned cluster
    for i, cluster in plot_data.groupby('Cluster'):   
        cluster.plot(ax = ax, kind = 'scatter', x = 'Dimension 1', y = 'Dimension 2', \
                     color = cmap((i)*1.0/(len(centers)-1)), label = 'Cluster %i'%(i), s=30);

    # Plot centers with indicators
    for i, c in enumerate(centers):
        ax.scatter(x = c[0], y = c[1], color = 'white', edgecolors = 'black', \
                   alpha = 1, linewidth = 2, marker = 'o', s=200);
        ax.scatter(x = c[0], y = c[1], marker='$%d$'%(i), alpha = 1, s=100);

    # Plot transformed sample points 
    ax.scatter(x = pca_samples[:,0], y = pca_samples[:,1], \
               s = 150, linewidth = 4, color = 'black', marker = 'x');

    # Set plot title
    ax.set_title("Cluster Learning on PCA-Reduced Data - Centroids Marked by Number\nTransformed Sample Data Marked by Black Cross");


def biplot(good_data, reduced_data, pca):
    '''
    Produce a biplot that shows a scatterplot of the reduced
    data and the projections of the original features.
    
    good_data: original data, before transformation.
               Needs to be a pandas dataframe with valid column names
    reduced_data: the reduced data (the first two dimensions are plotted)
    pca: pca object that contains the components_ attribute

    return: a matplotlib AxesSubplot object (for any additional customization)
    
    This procedure is inspired by the script:
    https://github.com/teddyroland/python-biplot
    '''

    fig, ax = plt.subplots(figsize = (14,8))
    # scatterplot of the reduced data    
    ax.scatter(x=reduced_data.loc[:, 'Dimension 1'], y=reduced_data.loc[:, 'Dimension 2'], 
        facecolors='b', edgecolors='b', s=70, alpha=0.5)
    
    feature_vectors = pca.components_.T

    # we use scaling factors to make the arrows easier to see
    arrow_size, text_pos = 7.0, 8.0,

    # projections of the original features
    for i, v in enumerate(feature_vectors):
        ax.arrow(0, 0, arrow_size*v[0], arrow_size*v[1], 
                  head_width=0.2, head_length=0.2, linewidth=2, color='red')
        ax.text(v[0]*text_pos, v[1]*text_pos, good_data.columns[i], color='black', 
                 ha='center', va='center', fontsize=18)

    ax.set_xlabel("Dimension 1", fontsize=14)
    ax.set_ylabel("Dimension 2", fontsize=14)
    ax.set_title("PC plane with original feature projections.", fontsize=16);
    return ax
    

def channel_results(reduced_data, outliers, pca_samples):
    '''
    Visualizes the PCA-reduced cluster data in two dimensions using the full dataset
    Data is labeled by "Channel" and cues added for student-selected sample data
    '''

    # Check that the dataset is loadable
    try:
        full_data = pd.read_csv("customers.csv")
    except:
        print("Dataset could not be loaded. Is the file missing?")       
        return False

    # Create the Channel DataFrame
    channel = pd.DataFrame(full_data['Channel'], columns = ['Channel'])
    channel = channel.drop(channel.index[outliers]).reset_index(drop = True)
    labeled = pd.concat([reduced_data, channel], axis = 1)
    
    # Generate the cluster plot
    fig, ax = plt.subplots(figsize = (14,8))

    # Color map
    cmap = cm.get_cmap('gist_rainbow')

    # Color the points based on assigned Channel
    labels = ['Hotel/Restaurant/Cafe', 'Retailer']
    grouped = labeled.groupby('Channel')
    for i, channel in grouped:   
        channel.plot(ax = ax, kind = 'scatter', x = 'Dimension 1', y = 'Dimension 2', \
                     color = cmap((i-1)*1.0/2), label = labels[i-1], s=30);
        
    # Plot transformed sample points   
    for i, sample in enumerate(pca_samples):
        ax.scatter(x = sample[0], y = sample[1], \
               s = 200, linewidth = 3, color = 'black', marker = 'o', facecolors = 'none');
        ax.scatter(x = sample[0]+0.25, y = sample[1]+0.3, marker='$%d$'%(i), alpha = 1, s=125);

    # Set plot title
    ax.set_title("PCA-Reduced Data Labeled by 'Channel'\nTransformed Sample Data Circled");
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,509评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,806评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,875评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,441评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,488评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,365评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,190评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,062评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,500评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,706评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,834评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,559评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,167评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,779评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,912评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,958评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,779评论 2 354

推荐阅读更多精彩内容