平衡二叉搜索树

1. 树的概念

image

一个树由节点组成,这些节点包含根节点,父节点,子节点,兄弟节点;没有任何一个节点的树称为空树;如果一棵树只包含一个节点,那么该节点为根节点;

  • 节点的度(degree): 子树的个数
  • 树的度: 所有节点度中的最大值
  • 叶子节点: 度为0的节点
  • 非叶子节点: 度不为0的节点
  • 层数(level): 根节点在第1层,根节点的子节点在第2层,以此类推
  • 节点的深度(depth): 从根节点到当前节点的唯一路径的节点总数
  • 树的深度: 所有节点深度的最大值
  • 节点的高度:从当前节点到最远叶节点的路径节点总数
  • 树的高度:所有节点高度中的最大值
  • 树的深度等于树的高度

二叉树是每个节点的度最大为2的树,分别为 左子树右子树;树按类型分为 有序树无序树,二叉树是一种有序树。二叉树特征:

二叉树

  • 非空二叉树的第 i 层,最多包含由 i^{2-1} 个节点,其中i >= 1;
  • 高度为h的二叉树上,最多包含 2^h - 1 个节点,其中h >= 1;
  • 对于任何一颗非空二叉树,如果叶子节点个数为n0,度为2的节点个数为n2,则n0 = n2 + 1;
  1. 假设节点度为1的个数是n1,那么二叉树的总节点树n = n0 + n1 + n2;
  2. 二叉树的边数 boundary = n1 + 2 * n2 = n - 1 = n0 + n1 + n2 - 1;
  3. 可得出 n0 = n2 + 1;

二叉树分类:

  • 真二叉树 是度为0,或度为2
  • 满二叉树 是度为0,或度为2,且所有的叶子节点都是最后一层;满二叉树肯定是真二叉树,而且是相同层数的二叉树中节点个数最多的。
    满二叉树
  • 完全二叉树 是指 叶子节点只会出现在最后两层,而且最后一层的叶子节点都是向左对齐的。完全二叉树从根节点到倒数第二层都是满二叉树。完全二叉树的特效如下:
  1. 度为1 的节点只有左节点。 且度为1的节点数只有1个或0个;
  2. 同样的节点数的二叉树,完全二叉树的高度最小;
  3. 假设完全二叉树的高度为h (h >= 1), 那么有
  4. 至少有 2^{h-1} 个节点;
  5. 最多有2^{h} - 1 个节点;
  6. 节点数为 2^{h-1}<= n < 2^{h} ;
  7. h-1 <= \log_2{n} < h ;
  8. h = floor(\log_2{n}) + 1 ;
  • 如果有n 节点的完全二叉树(n>0),从上到下,从左到右的节点排序索引从1开始,对于任意的第i个节点;
  1. i = 1 , 表示根节点;
  2. i > 1 ,则父节点索引为floor(i/2);
  3. 如果 2i <= n, 它的左子树索引为 2i ;
  4. 如果 2*i > n ,该节点无左子树;
  5. 如果 2i + 1 <= n ,该节点的右子节点索引为 2i + 1;
  6. 如果 2*i + 1 > n,该节点无右子节点;

2. 二叉树的遍历

二叉树的遍历分为 前序遍历(Preorder Traversal)中序遍历(Inorder Traversal)后序遍历(Postorder Traversal)层序遍历(Level Traversal)

  • 前序遍历: 从根节点, 前序遍历左子树,前序遍历右子树。遍历顺序为:4,2,1,3,6,5,7;
  • 中序遍历:中序遍历左子树根节点、中序遍历右子树。遍历顺序为:1,2,3,4,5,6,7;
  • 后序遍历:后序遍历左子树、后序遍历右子树根节点。遍历顺序为:1,3,2,5,7,6,4;
  • 层序遍历:从上到下,从左到右依次访问每个节点。遍历顺序为:4,2,6,1,3,5,7;

层序遍历的应用:

  1. 计算二叉树的高度:
    public int height() {
        if (root == null) return 0;
        
        // 树的高度
        int height = 0;
        // 存储着每一层的元素数量
        int levelSize = 1;
        Queue<Node<E>> queue = new LinkedList<>();
        queue.offer(root);
        
        while (!queue.isEmpty()) {
            Node<E> node = queue.poll();
            levelSize--;
            
            if (node.left != null) {
                queue.offer(node.left);
            }
            
            if (node.right != null) {
                queue.offer(node.right);
            }

            if (levelSize == 0) { // 意味着即将要访问下一层
                levelSize = queue.size();
                height++;
            }
        }
        
        return height;
    }

    // 方式2
    private int height(Node<E> node) {
        if (node == null) return 0;
        return 1 + Math.max(height(node.left), height(node.right));
    }

  1. 判断是否为完全二叉树:
    public boolean isComplete() {
        if (root == null) return false;
        
        Queue<Node<E>> queue = new LinkedList<>();
        queue.offer(root);

        boolean leaf = false;
        while (!queue.isEmpty()) {
            Node<E> node = queue.poll();
            if (leaf && !node.isLeaf()) return false;
            
            if (node.left != null) {
                queue.offer(node.left);
            } else if (node.right != null) { // node.left == null && node.right != null
                return false;
            }
            
            if (node.right != null) {
                queue.offer(node.right);
            } else { // node.right == null
                leaf = true;
            }
        }
        
        return true;
    }

前驱节点与后继节点

  • 前驱节点(predecessor):中序遍历时的前一个节点。即node.left.right.right.right...,直到right为null;
  • 后继节点(successor):中序遍历时的后一个节点。即node.right.left.left.left...,直到left为null;

3. 二叉搜索树

二叉搜索树是二叉树的一种,又被称为二叉查找树、二叉排序树。英文缩写为BST。

  • 任意一个节点的值大于左子树所有节点的值;
  • 任意一个节点的值小于右子树所有节点的值;
  • 二叉搜索树节点的值必须具备可比较性。比如intfloat, 如果是 自定义的对象 必须指明比较方式;
  • 二叉搜索树的搜索、删除、添加最坏时间复杂度均可优化为O(logn)
  • 不允许为null;

4. 平横二叉搜索树

时间复杂度分析

上图为二叉搜索树的时间复杂度,当n较大时两者的差异比较明显。所以为了保障二叉搜索树的性能,需要保障左右子树的平衡。

平衡:当节点数量固定时,左右子树的高度越接近,这颗树就越平衡,即树的高度越低。最理想的平衡像完全二叉树、满二叉树,高度达到最小。

改进二叉搜索树的方式是在节点的添加删除操作之后,想办法让二叉搜索树达到平衡,从而达到一颗适度平衡的二叉搜索树,称为平衡二叉树

平衡二叉树 英文简称BBST,常见的典型平衡二叉树有:

  • AVL, Window NT内核中广泛使用;
  • 红黑树, java的TreeMap, TreeSet, HashMap, HashSet等广泛使用。

5. AVL

  • 平衡因子(Balance Factor)指 某个节点 左右子树的高度差;
  • AVL 特点:
  1. 每个节点的平衡因子只能为-1、0、1;
  2. 搜索,添加,删除的时间复杂度为O(logn);
  1. 添加节点导致的失衡以及解决办法:
  • 向AVL树中添加节点时(只会在叶子节点添加),可能会导致所有祖先节点都失衡,但是父节点、非祖父节点都是不可能失衡的。

  • LL ----- 右旋转


    右旋转
  • RR ----- 左旋转


    左旋转
  • LR ----- LR 旋转


    LR旋转
  • RL ----- RL旋转: 与LR 旋转相似,先将p右旋转,再将g左旋转;略...

添加节点后,调整平衡
  1. 删除节点导致的失衡以及解决办法:
  • 可能会导致 父节点祖先节点 失衡(只有1个节点失衡),其他节点不会导致失衡。恢复平衡后,可能会导致更高层的祖先节点失衡。删除和添加的都是根据节点所在的位置是否失衡,来进行旋转,以达到平衡。
  • 一直递归父节点以及祖父节点,先判断平衡因子是否-1,0,1,如果不是调整节点的平衡(rebalance)


    删除后,调整平衡
  1. 平均时间复杂度
  • 搜索:O(logn);
  • 添加:O(logn),仅需O(1)次旋转操作;
  • 删除:O(logn),最多需要O(logn)次旋转操作;

6. 红黑树

红黑树

红黑树也是一种自平衡的二叉搜索树,红黑树的5个特性:

  1. 节点是 Red 或者 Black
  2. 根节点是 Black
  3. 叶子节点(外部节点、空节点)为 Black
  4. Red 的子节点都是 Black节点(即在所有路径上,不可能包含连续2个为 Red 的节点);
  5. 任意节点叶子节点的所有路径上包含相同数量的 Black 节点;

红黑树 和 4阶B树具有等价转化。

  • Black 节点与它的 Red 子节点融合形成B树的一个节点;
  • 红黑树的 Black 节点个数 与 4阶B树的节点总数相等;
1) 添加 节点:

parent : 父节点
sibling : 兄弟节点
uncle : 叔父节点(parent节点的兄弟节点)
grand : 祖父节点 (parent节点的父节点)
新添加的节点必须添加到叶子节点中,建议新添加的为 Red 节点,这样可以尽可能满足红黑树性质,即满足性质1,2,3,5,性质4不一定满足。

  1. 如果添加的是根节点,那么直接染成 Black
  2. 如果 parent 节点是 Black,那么添加的 Red 节点不需要做任何处理,就已经符合红黑树的全部性质;
    88节点的添加
  3. 如果 parent 节点是 Red,就会出现连续两个 Red,不符合性质4,需要进行处理;
    a. 如果 uncle 节点不是 Red,将会导致节点上溢;
    b. 如果 uncle 节点不是 Red,添加节点的位置 LL \ RR
    1)将 parent 染成 Black,将 grand 染成 Red
    2)对 grand 进行单旋转操作;
    uncle节点不是red,LL\RR情况

    c. 如果 uncle 节点不是 Red, 添加节点的位置 LR \ RL
    1)将自己染成 Black,将 grand 染成 Red
    2)进行 LR\RL 双旋转;
    uncle节点不是red,LR\RL情况

    d. 如果 uncle 节点是 Red
    1)将 parent,uncle 染成Black
    2)将 grand 染成 Red,向上合并,即当作新的节点进行处理;
    uncle节点是red,将parent、uncle染成black,grand染成red,向上合并当作新节点添加
2) 删除 节点:

由于删除节点时,我们会使用B树的前驱或后继节点来替换该节点,实际上删除都是叶子节点

  1. 删除的是 Red 节点,不需要任何处理;

  2. 不可能直接删除拥有2个Red 子节点的 Black 节点,因为这个节点会找到前驱或后继节点来替换,所以不考虑;

  3. 所以只需要考虑, 删除的是拥有 1个Red 子节点的 Black 节点 或者 Black的叶子节点:

  4. 删除的是拥有 1个Red 子节点的 Black 节点:
    a. 用 Red子节点替代 parent节点;
    b. 将替代的Red 子节点染成 Black,既可以修复红黑树性质;

  5. 删除Black的叶子节点,并且sibling为Black
    a. 如果sibling最少有一个Red 子节点:
    1)根据情况,进行之前的LL、RR、LR、RL旋转
    2)旋转后,中心点(该子树的根节点)继承parent的颜色;
    3)旋转后,将左右子节点染成 Black

    删除Black的叶子节点,并且sibling为Black(80)

b. sibling没有一个Red 子节点:
1)将sibling 染成 Red, parent 染成 Black,就可以修复红黑树性质;

删除Black的叶子节点,sibling没有一个**Red** 子节点

  1. 删除Black的叶子节点,并且sibling为 Red
    a. 先将sibling染成 Black,parent 染成 Red,在进行旋转操作;
    b. 回到sibling 是 Black的情况,再进行删除操作;
    删除**Black**的叶子节点,并且sibling为 **Red**
3) 红黑树的平均时间复杂度:
  • 搜索:O(logn);
  • 添加:O(logn),O(1)次旋转;
  • 删除:O(logn),O(1)次旋转;
4) AVL 与 红黑树对比:
  • AVL 标准比较严格,平衡因子不能超过1;

  • AVL的树高度 比 红黑树高度低;

  • AVL搜索,添加,删除的时间复杂度都是O(logn),添加仅需O(1)次旋转调整,删除最多需要O(logn)次旋转操作;

  • 红黑树 的搜索,添加,删除操作时间复杂度都是O(logn),添加和删除仅需O(1)次旋转调整;

  • 搜索的次数远远大于添加,删除时,优先选择AVL(高度比较低),否则选择红黑树,总体上红黑树的性能 比 AVL高;

绘图工具: BinaryTreeGraph

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343