分布式环境下的数据一致性问题的方案讨论

由于互联网目前越来越强调分布式架构,如果是交易类系统,面临的将会是分布式事务上的挑战。当然目前有很多开源的分布式事务产品,例如java JTA,但是这种解决方案的成本是非常高的,而且实现起来非常复杂,效率也比较低下。对于极端的情况:例如发布,故障的时候都是没有办法保证强一致性的。

首先,在目前的互联网应用中,我们通过一个比较常见的例子,让大家更深入的了解一下分布式系统设计中关于数据一致性的问题。拿我们经常使用的功能来考虑吧,最近网购比较热门,就以京东为例的,我们来看看京东的一个简单的购物流程

用户在京东上下了一个订单,发现自己在京东的账户里面有余额,然后使用余额支付,支付成功之后,订单状态修改为支付成功,然后通知仓库发货。假设订单系统,支付系统,仓库系统是三个独立的应用,是独立部署的,系统之间通过远程服务调用。

订单的有三个状态:I:初始 P:已支付 W:已出库,订单金额100, 会员帐户余额200

如果整个流程比较顺利,正常情况下,订单的状态会变为I->P->W,会员帐户余额100,订单出库。

但是如果流程不顺利了呢?考虑以下几种情况

1:订单系统调用支付系统支付订单,支付成功,但是返回给订单系统数据超时,订单还是I(初始状态),但是此时会员帐户余额100,会员肯定会马上找京东骂京东,为啥不给老子发货,我都付钱了

2:订单系统调用支付系统成功,状态也已经更新成功,但是通知仓库发货失败,这个时候订单是P(已支付)状态,此时会员帐户余额是100,但是仓库不会发货。会员也要骂京东。

3:订单系统调用支付系统成功,状态也已经更新成功,然后通知仓库发货,仓库告诉订单系统,没有货了。这个时候数据状态和第二种情况一样。

对于情况一的问题,我们来分析一下解决方案,能想到的解决方案如下

1 假设调用支付系统支付订单的时候先不扣钱,订单状态更新完成之后,在通知支付系统你扣钱

如果采用这种设计方案,那么在同一时刻,这个用户,又支付了另外一笔订单,订单价格200,顺利完成了整个订单支付流程,由于当前订单的状态已经变成了支付成功,但是实际用户已经没有钱支付了,这笔订单的状态就不一致了。即使用户在同一个时刻没有进行另外的订单支付行为,通知支付系统扣钱这个动作也有可能完不成,因为也有可能失败,反而增加了系统的复杂性。

2 订单系统自动发起重试,多重试几次,例如三次,直到扣款成功为止。

这个看起来也是不错的考虑,但是和解决方案一样,解决不了问题,还会带来新的问题,假设订单系统第一次调用支付系统成功,但是没有办法收到应答,订单系统又发起调用,完了,重复支付,一次订单支付了200。

假设支付系统正在发布,你重试多少次都一样,都会失败。这个时候用户在等待,你怎么处理?

3 在第二种方案的基础上,我们先解决订单的重复支付行为,我们需要在支付系统上对订单号进行控制,一笔订单如果已经支付成功,不能在进行支付。返回重复支付标识。那么订单系统根据返回的标识,更新订单状态。

接下来解决重试问题,我们假设应用上重试三次,如果三次都失败,先返回给用户提示支付结果未知。假设这个时候用户重新发起支付,订单系统调用支付系统,发现订单已经支付,那么继续下面的流程。如果会员没有发起支付,系统定时(一分钟一次)去核对订单状态,如果发现已经被支付,则继续后续的流程。

这种方案,用户体验非常差,告诉用户支付结果未知,用户一定会骂你,你丫咋回事情,我明明支付了,你告诉我未知。假设告诉用户支付失败,万一实际是成功的咋办。你告诉用户支付成功,万一支付失败咋办。

4 第三种方案能够解决订单和支付数据的一致性问题,但是用户体验非常差。当然这种情况比较可能是少数,可以牺牲这一部分的用户体验,我们还有没有更好的解决方案,既能照顾用户体验,又能够保证资金的安全性。

我们再回来看看第一种方案,我们先不扣钱,但是有木有办法让这一部分钱不让用户使用,对了,我们先把这一部分钱冻结起来。订单系统先调用支付系统成功的时候,支付系统先不扣钱,而是先把钱冻结起来,不让用户给其他订单支付,然后等订单系统把订单状态更新为支付成功的时候,再通知支付系统,你扣钱吧,这个时候支付系统扣钱,完成后续的操作。

看起来这个方案不错,我们仔细在分析一下流程,这个方案还存在什么问题,假设订单系统在调用支付系统冻结的时候,支付系统冻结成功,但是订单系统超时,这个时候返回给用户,告知用户支付失败,如果用户再次支付这笔订单,那么由于支付系统进行控制,告诉订单系统冻结成功,订单系统更新状态,然后通知支付系统,扣钱吧。如果这个时候通知失败,木有问题,反正钱都已经是冻结的了,用户不能用,我只要定时扫描订单和支付状态,进行扣钱而已。

那么如果变态的用户重新拍下来一笔订单,100块钱,对新的订单进行支付,这个时候由于先前那一笔订单的钱被冻结了,这个时候用户余额剩余100,冻结100,发现可用的余额足够,那就直接在对用户扣钱。这个时候余额剩余0,冻结100。先前那一笔怎么办,一个办法就是定时扫描,发现订单状态是初始的话,就对用户的支付余额进行解冻处理。这个时候用户的余额变成100,订单数据和支付数据又一致了。   假设原先用户余额只有100,被冻结了,用户重新下单,支付的时候就失败了啊,的确会发生这一种情况,所以要尽可能的保证在第一次订单结果不明确的情况,尽早解冻用户余额,比如10秒之内。但是不管如何快速,总有数据不一致的时刻,这个是没有办法避免的。

上面分析解决了第一个的问题以及相应的方案,发现在数据分布的环境下,很难绝对的保证数据一致性(任何一段区间),但是有办法通过一种补偿机制,最终保证数据的一致性。

下面再分析一下第二个问题:订单系统调用支付系统成功,状态也已经更新成功,但是通知仓库发货失败,这个时候订单是P(已支付)状态,此时会员帐户余额是100,但是仓库不会发货。会员也要骂京东。

通过上面的分析,这个相对来说是比较简单的,我可以采取重试机制,如果发现通知仓库发货失败,就一致重试,

这里面有两种方式:

1 异步方式:通过类似MQ(消息通知)的机制,这个是异步的通知

2 同步调用:类似于远程过程调用

对于同步的调用的方式,比较简单,我们能够及时获取结果;对于异步的通知,就必须采用请求,应答的方式进行,这一点在(关于分布式系统的数据一致性问题(一))里面有介绍。这里面就不再阐述。

来看看第三个问题:订单系统调用支付系统成功,状态也已经更新成功,然后通知仓库发货,仓库告诉订单系统,没有货了。这个时候数据状态和第二种情况一样。

我觉得这是一个很有意思的问题,我们还是考虑几种解决的方案

1 在会员下单的时刻,就告诉仓库,我要你把货物留下来,

2 在会员支付订单时候,在支付之前检查仓库有没有货,如果没有货,就告知会员木有货物了

3 如果会员支付成功,这个时候没有货了,就会退款给用户或者等待有货的时候再发货

正常情况,京东的仓库一般都是有货的,所以影响到的会员很少,但是在秒杀和营销的时候,这个时候就不一定了,我们考虑假设仓库有10台iphone

如果采用第一种方案,

1 在会员下单的时候,相当于库存就减1,那么用户恶意拍下来,没有去支付,就影响到了其他用户的购买。京东可以设置一个订单超时时间,如果这段时间内没有支付,就自动取消订单

2 在会员支付之前,检查仓库有货,这种方案了,对于用户体验不好,但是对于京东比较好,至少我东西都卖出去了。那些没有及时付款的用户,只能投诉了京东无故取消订单

3 第三种方案,这个方案体验更不好,而且用户感觉受到京东欺诈,但是对于京东来说,比第二种方案更有益,毕竟我还可以多卖出一点东西。

个人觉得,京东应该会采用第二种或者第三种方式来处理这类情况,我在微博上搜索了 “京东 无故取消订单”,发现果真和我预料的处理方式。不过至于这里的无故取消是不是技术上的原因我不知道,如果真的是技术上的原因,我觉得京东可以采用不同的处理方案。对于秒杀和促销商品,可以考虑第一种方案,大多数人都会直接付款,毕竟便宜啊,如果用户抢不到便宜的东西,抱怨当然很大了。这样可以照顾大多数用户的体验。对于一般的订单,可以采用第二种或者第三种方式,这种情况下,发生付款之后仓库没有货的情况会比较少,并且就算发生了,用户也会觉得无所谓,大不了退钱吗,这样就可以实现自己的利益最大化而最低程度的减少用户体验。

而铁道部在这个问题上,采用的是第一种方案,为什么和京东不一样,就是因为用户体验,如果用户把票都买了,你告诉我木有票了,旅客会杀人的。哈哈,不过铁道部不担心票卖不出去,第一种方案对他影响没有什么。

说了这么多,就是说 分布式环境下(数据分布)要任何时刻保证数据一致性是不可能的,只能采取妥协的方案来保证数据最终一致性。这个也就是著名的CAP定理。

在前面的文章中,介绍了关于分布式系统中数据一致性的问题,这一篇主要介绍CAP定理以及自己对CAP定理的了解。

CAP定理是2000年,由 Eric Brewer 提出来的。Brewer认为在分布式的环境下设计和部署系统时,有3个核心的需求,以一种特殊的关系存在。这里的分布式系统说的是在物理上分布的系统,比如我们常见的web系统。

这3个核心的需求是:Consistency,Availability和Partition Tolerance,赋予了该理论另外一个名字 - CAP。

Consistency:一致性,这个和数据库ACID的一致性类似,但这里关注的所有数据节点上的数据一致性和正确性,而数据库的ACID关注的是在在一个事务内,对数据的一些约束。

Availability:可用性,关注的在某个结点的数据是否可用,可以认为某一个节点的系统是否可用,通信故障除外。

Partition Tolerance:分区容忍性,是否可以对数据进行分区。这是考虑到性能和可伸缩性。

为什么不能完全保证这个三点了,个人觉得主要是因为一旦进行分区了,就说明了必须节点之间必须进行通信,涉及到通信,就无法确保在有限的时间内完成指定的行文,如果要求两个操作之间要完整的进行,因为涉及到通信,肯定存在某一个时刻只完成一部分的业务操作,在通信完成的这一段时间内,数据就是不一致性的。如果要求保证一致性,那么就必须在通信完成这一段时间内保护数据,使得任何访问这些数据的操作不可用。

如果想保证一致性和可用性,那么数据就不能够分区。一个简单的理解就是所有的数据就必须存放在一个数据库里面,不能进行数据库拆分。这个对于大数据量,高并发的互联网应用来说,是不可接受的。

我们可以拿一个简单的例子来说明:假设一个购物系统,卖家A和卖家B做了一笔交易100元,交易成功了,买家把钱给卖家。

这里面存在两张表的数据:Trade表Account表 ,涉及到三条数据Trade(100),Account A ,Account B

假设 trade表和account表在一个数据库,那么只需要使用数据库的事务,就可以保证一致性,同时不会影响可用性。但是随着交易量越来越大,我们可以考虑按照业务分库,把交易库和account库单独分开,这样就涉及到trade库和account库进行通信,也就是存在了分区,那么我们就不可能同时保证可用性和一致性。

我们假设初始状态

trade(buyer,seller,tradeNo,status) = trade(A,B,20121001,I)

account(accountNo,balance) = account(A,300)

account(accountNo,balance) = account(B,10)

在理想情况下,我们期望的状态是

trade(buyer,seller,tradeNo,status) = trade(A,B,20121001,S)

account(accountNo,balance) = account(A,200)

account(accountNo,balance) = account(B,110)

但是考虑到一些异常情况

假设在trade(20121001,S)更新完成之后,帐户A进行扣款之前,帐户A进行了另外一笔300款钱的交易,把钱消费了,那么就存在一个状态

trade(buyer,seller,tradeNo,status) = trade(A,B,20121001,S)

account(accountNo,balance) = account(A,0)

account(accountNo,balance) = account(B,10)

产生了数据不一致的状态

由于这个涉及到资金上的问题,对资金要求比较高,我们必须保证一致性,那么怎么办,只能在进行trade(A,B,20121001)交易的时候,对于任何A的后续交易请求trade(A,X,X),必须等到A完成之后,才能够进行处理,也就是说在进行trade(A,B,20121001)的时候,Account(A)的数据是不可用的。

任何架构师在设计分布式的系统的时候,都必须在这三者之间进行取舍。首先就是是否选择分区,由于在一个数据分区内,根据数据库的ACID特性,是可以保证一致性的,不会存在可用性和一致性的问题,唯一需要考虑的就是性能问题。对于可用性和一致性,大多数应用就必须保证可用性,毕竟是互联网应用,牺牲了可用性,相当于间接的影响了用户体验,而唯一可以考虑就是一致性了。

牺牲一致性

对于牺牲一致性的情况最多的就是缓存和数据库的数据同步问题,我们把缓存看做一个数据分区节点,数据库看作另外一个节点,这两个节点之间的数据在任何时刻都无法保证一致性的。在web2.0这样的业务,开心网来举例子,访问一个用户的信息的时候,可以先访问缓存的数据,但是如果用户修改了自己的一些信息,首先修改的是数据库,然后在通知缓存进行更新,这段期间内就会导致的数据不一致,用户可能访问的是一个过期的缓存,而不是最新的数据。但是由于这些业务对一致性的要求不太高,不会带来太大的影响。

异常错误检测和补偿

还有一种牺牲一致性的方法就是通过一种错误补偿机制来进行,可以拿上面购物的例子来说,假设我们把业务逻辑顺序调整一下,先扣买家钱,然后更新交易状态,在把钱打给卖家

我们假设初始状态

account(accountNo,balance) = account(A,300)

account(accountNo,balance) = account(B,10)

trade(buyer,seller,tradeNo,status) = trade(A,B,20121001,I)

那么有可能出现

account(accountNo,balance) = account(A,200)

trade(buyer,seller,tradeNo,status) = trade(A,B,20121001,S)

account(accountNo,balance) = account(B,10)

那么就出现了A扣款成功,交易状态也成功了,但是钱没有打给B,这个时候可以通过一个时候的异常恢复机制,把钱打给B,最终的情况保证了一致性,在一定时间内数据可能是不一致的,但是不会影响太大。

上面的异常检测恢复机制(事后补偿),这种机制其实还是有限制,首先对于分区检测操作,不同的业务涉及到的分区操作可能不一样。所以这只能作为一种思想,不能做一个通用的解决方案。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容