图像处理之拉普拉斯算子的详细推导过程

看了好多帖子,都没有详细简明的推导过程,所以在这里写一下(前提了解导数的极限定义和图像的结构):

  • 拉普拉斯算子定义:
    \bigtriangledown^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}

  • f(x,y)对x右侧的一阶偏导(因为相邻点像素距离差为1,所以分母为1略去):
    \frac{\partial f}{\partial x} = f(x+1,y) - f(x,y)

  • f(x,y)对x左侧的一阶偏导(同上):
    \frac{\partial f}{\partial x} = f(x,y) - f(x-1,y)

  • f(x,y)对x的二阶偏导(右侧一阶减左侧一阶,分母仍然是1略去):
    \begin{aligned} \frac{\partial^2 f}{\partial x^2} &= f(x+1,y) - f(x,y) - (f(x,y) - f(x-1,y)) \\ &= f(x+1,y) + f(x-1,y) - 2f(x,y) \end{aligned}

  • f(x,y)对y的二阶偏导(同上):
    \begin{aligned} \frac{\partial^2 f}{\partial y^2} &= f(x,y+1) - f(x,y) - (f(x,y) - f(x,y-1)) \\ &= f(x,y+1) + f(x,y-1) - 2f(x,y) \end{aligned}

  • 上面两式相加得到结果:
    \begin{aligned} \bigtriangledown^2 f &= f(x+1,y) + f(x-1,y) - 2f(x,y) + f(x,y+1) + f(x,y-1) - 2f(x,y) \\ &= (f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)) - 4f(x,y) \end{aligned}

然后按照结果中每个点的权值变成卷积核:

0 1 (f(x,y-1)的权值) 0
1 (f(x-1,y)的权值) -4 (f(x,y)的权值) 1 (f(x+1,y)的权值)
0 1 (f(x,y+1)的权值) 0
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 229,406评论 6 538
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 99,034评论 3 423
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 177,413评论 0 382
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,449评论 1 316
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 72,165评论 6 410
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 55,559评论 1 325
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,606评论 3 444
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 42,781评论 0 289
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,327评论 1 335
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 41,084评论 3 356
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,278评论 1 371
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 38,849评论 5 362
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,495评论 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 34,927评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,172评论 1 291
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 52,010评论 3 396
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,241评论 2 375

推荐阅读更多精彩内容

  • 最大熵模型 0.引言 这部分内容主要是从七月在线的课程上学习到的,算是自己的学习笔记。在介绍最大熵模型和EM算法之...
    吴金君阅读 1,471评论 0 1
  • 文章作者:Tyan博客:noahsnail.com | CSDN | 简书 声明:作者翻译论文仅为学习,如有侵权请...
    SnailTyan阅读 5,125评论 0 8
  • #1996 AHSME ##1996 AHSME Problems/Problem 1 The addition ...
    abigtreenj阅读 1,427评论 0 0
  • 支持向量机 0.引言 本文主要参考了李航的《统计学习方法》。是本人学习支持向量机的学习笔记。首先对支持向量机做简单...
    吴金君阅读 1,134评论 2 5
  • 接上一篇文章 我们知道 \Delta = \Delta^T 令 F_l = (f_1, \cdots, f_l),...
    水之心阅读 939评论 0 1