Java程序员须知的七个日志管理工具

来源:http://www.importnew.com/12383.html

日志管理工具有Splunk、Sumo Logic、LogStash、GrayLog、Loggly和PaperTrails等等,数不胜数。日志就像石油,二十多年了我们一直想摆脱它,却一直没有做到。

为了处理日益增长的数据,近年来出现了一大批分析和管理日志的工具,开发和管理人员能够借助这些工具来了解增长的数据。在这篇文章中,我将站在开发者的角度,分析一下这些工具的特点。

Splunk

作为这个领域中最大的工具,我决定将 Splunk 做一个单独的分类。并不是说这个工具是最好的,而是对这个产品给予肯定,因为它从本质上创造了一个新的领域。

优点

在这个领域内功能最齐全的可能就是 Splunk 了。它有数百个来分析各种形式日志信息的程序(我计算的是537个)——从安全领导到商业分析,再到底层监控。Splunk 的搜索和图表工具如此丰富,没有通过它(UI和API)得不到的数据。

缺点

Splunk 主要有两个缺点。第一,这个因素可能有些主观,我觉得这个解决方案太复杂了。如果要在一个高度复杂的环境中部署,就需要安装和配置一个专用集群。作为一个开发者,通常会因为这点而不把这个方案作为第一选择。

第二个缺点是它太昂贵了。要支持一个真实世界的软件,你可能会花费一万多美金,这很可能就意味着你需要从其他地方削减预算,这样开发进程就慢了。如果你刚上架了一款 app,但是要得到高质量的日志分析却又不影响开发进程——请继续阅读。

更多企业级日志分析工具请点击这里。

SaaS日志分析工具

Sumo Logic

Sumo 是在 Splunk 的基础上建立的 SaaS 版本,它沿用了 Splunk 早期的一些特性和视觉效果。不得不说,SL 今天已经发展成了一个成熟的企业级日志管理工具。

优点

SL 具备对数据简化、查找、制表等功能。可能是 SaaS 型的日志分析工具中功能最多的了。同样,作为 SaaS 型,SL 还具有安装简单,操作简单等优点。最吸引人的地方是,你可以建立一个基线,当一个事件(像是一个新版本首次上线或者恶意的请求等)使一些重要的指标发生了变化时,你可以收到动态通知。

缺点

由于这是通过 SaaS 的方式进行日志分析的,所以你必须将大量的数据上传至服务器进行分析,这就可能产生一些问题:

1.作为一个开发者,如果要分析的日志涉及到敏感信息或者 PII 你要确保做好了屏蔽。

2.在日志生成的时间与日志上传至服务的时间之间可能存在一些冲突。

3.在你的机器上回多出来几个 GB 的开销用于上传日志,不过这取决于你日志的吞吐量。

Sumo 服务的购买价格不是透明的,所以你要是想刷你团队的信用卡来购买的话会很麻烦。

更新——SL 团队刚刚告诉我们,你可以直接用信用卡从免费版本中购买服务,虽然不像网页版那样方便,但是也蛮不错的。

Loggly

Loggly 也是一个健壮的日志分析工具,强调简洁朴素让开发者用起来方便。

优点

SL 注重的是企业级别的应用和安全性,而 Loggly 却将重点放在了帮助开发者查找和修复操作性的问题上。因为操作界面非常友好,自定义性能和开发者仪表盘这种东西非常简单。并且它的价格透明,入门方便。

缺点

不要奢望 Loggly 具备成熟的架构、安全和分析解决方案。Loggly 不具备取证和监控基础架构,它仅仅是帮助开发者处理应用服务器数据的一个工具。除此之外的其他事情就需要你自己去做了。

PaperTrails

PaperTrails 擅长从多台机器上查找日志,并提供一个合并的窗口,使用起来很方便。鉴于你是从云端追踪日志,所以你离他们不会太远。

优点

PT 就是这么一个工具。通过它你可以从一个窗口轻松的查找多台机器上的日志。用户操作本身就像你机器上的日志,搜索命令也一样。它致力于将日志管理变得简单、易用,可以优雅地处理。而且它还不算很贵。

缺点

PT 是基于文本格式的。如果需要支持先进的集成、预测和报告功能,就显得力不从心了。

Splunk>Storm

这是 Splunk 的兄弟, Splunk 的服务器上提供托管。

优点

Storm 让你无需安装软件,就能体验 Splunk 的完整版的功能。

缺点

Storm 不是商业的,所以你的流量有限。你可以将其视作一个 Splunk 的限制版本,无需部署即可帮助新产品测试。最近有个叫 Splunk Cloud 的新服务,致力于提供 Splunk SaaS 的完整体验。

开源的分析软件

Logstash

Logstash 是一款收集和管理日志的开源工具。它用到了一些其他的开源的资源:使用 ElasticSearch 来索引和查找数据,使用 Kibana 制表和可视化处理。他们联合起来,组成一个强大的日志管理解决方案。

优点

作为一个开源的解决方案,Logstash 允许用户有更大的定制空间,而且很便宜。Logstash 用了三个成熟的开源部件——都受到了很好的维护——组成一个强大的可扩展的软件包。由于开源,安装和使用和非常方便。

缺点

由于 Logstash 从本质上来说是三个部件的堆砌,所以你需要面对三个不同的产品。这就意味着扩展也变得很复杂。Logstash 的过滤器是用 Ruby 写的,Kibana 是用纯 Javascript 写的,而 ElasticSearch 也有自己的 REST 接口和 JSON 模板。

当你转向产品时,还需要将三个不同的工具部署到服务器上,无疑增加了复杂度。

Graylog2

最近出现的一颗新星——GL2,用 MongoDB 和 ElasticSearch 支持的用来存储与搜索日志错误的工具。它致力于帮助开发者找到并修复程序中的错误。

在这一方面,还有 fluentd 和 Kafka 也是专注于存储日志的。看!我们有这么多选择啊!

Takipi for Logs

虽然这篇文章不是关于 Takipi 的,但是它有一项特性,你也许会发现和日志有关。

对于日志分析工具来说,最大的缺点就是你必须要有日志可以分析。从集成开发环境的角度看,如果没有异常报告,或者没有错误信息的数据,你就没办法知道哪里出问题了,这样世界上任何工具都帮不了你了!Debug 就卡在这里了。:(

在 Takipi 的一项优势就是可以跳过日志文件,进入到调试信息中。这样你就能看到真实的源代码和错误范围的变量了。了解更多点击这里。

Takipi 会报告所有的异常和错误,并且告诉你哪里出错了,即使是多线程或者是发生在多台机器上。1分钟之内就能安装,维护费用不足2%-部署Taikipi。

扩展阅读

关于Http协议,你必须要知道的

应对程序员面试,你必须知道的八大数据结构

我的编码习惯 —— 日志规范

MySQL到底有多少种日志类型需要我们记住的!

java开发:5个新的java异常检测工具,你知道几个呢?

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容