0x0E 大数据职位,数据场技能(上)

**摘要:除了报表统计外,还需要对数据的有很强的解读能力。电商中的个性推荐技术,商业与银行中的欺骗检测,智能手机中语音识别等等技术,让我们浑身便散发出大数据与机器学习的各种场信息,给人以满满的正能量。 **
0x0E.jpg

01 数据场

学过物理的小伙伴,都知道世界充满了电场和磁场。了解过佛学的人,都知道世界充满了念力场与信息场,通过信息场,可以与更高一级的文明进行沟通。

有的人一出现,浑身便会散发出强大的气场。现在是数据时代,整天和数据打交道,要培养自己的数据场。开句玩笑的话,以后往人群中一站,还未开口,浑身便散发出大数据与机器学习的各种场信息,给人以满满的正能量。

说起“大数据”一词,也是真正被吵够了。连做个简单的统计也叫大数据,做个表格、画个图形出来,就叫大数据了。凡是不和“大数据”沾边,就感觉已经落伍了。其实,很多人除了知道简单的统计外,根本不了解大数据是什么。甚至连Hadoop都不知为何物,更别谈机器学习了。

大数据是一个概念也是一门技术,是在以Hadoop为代表的大数据平台框架上进行的各种数据分析技术。包括了实时数据处理、离线数据处理;还包括了数据分析,数据挖掘,和用机器学习算法进行预测分析。

概念吵着吵着就变味了。用“大数据”来代表一切,有些不太合理。目前比较合适的一个词是数据科学(Data Science),做数据科学的可以叫数据科学家。当然真正到科学家这个级别,要求是非常高的,需要有完整的数据知识体系。

也许小时候的梦想就是当科学家,现在终于不用上博士就可以实现了。虽然很多都只是自己团队或者公司封的职位。接下来,可以看看,在数据方面上,大概有哪些职位。

02 数据职位

限于个人的阅历与认识,在此只是列举其中一部分出来。

2.1 开发相关

主要有数据抓取,也即通常说的网络爬虫。需要考虑数据抓取的实时性与完整性,还有数据及时更新,数据去重等等。严格来说,和通常意义上的大数据相关性不大,主要是后端开发的一系列技术,其中也会涉及分布式的一些技术。

ETL开发,ETL为Extract、Transform和Load的缩写,即数据抽取,转换与装载。将各种来源的数据进行收集、规范和存储起来。可以是离线的方式,存储在以Hadoop为代表的大数据集群中。也可以是实时的展现在报表系统中。如果是实时的,也叫实时数据流开发,通常和Storm框架或者Spark Streaming技术相关。

Hadoop平台开发,专指以大数据框架为基础,并在此基础上进行二次开发或者数据流开发。对数据平台做开发与改进,只能是程序员的工作了,根据业务需求,对现有的平台进行改进与优化。因为是平台相关的,通常需要Java与Scala的专业程序员,这块和数据分析基本没有太大关系。

另外还有纯前端的数据可视化技术开发,或者纯运维的大数据集群管理等等。

2.2 报表分析

商业智能分析,包括报表分析,运营或者销售分析,这一块以Excell、SPSS和R为代表。主要是指对针对具体业务,对现有的数据进行统计分析,期待从中发现一些规律与趋势。

数据分析报表,也是最常用的数据分析师职位的一些工作,通常产出以报表为主。这块很多时候会与运营部门的需求相关,技术上主要以成熟的工具为主。

当数据量一大,就会涉及在集群环境下的分析,分析师通常很熟悉SQL,这也是构建于Hadoop之上的Hive能被大众熟悉的原因。

除了报表统计外,还需要对数据的有很强的解读能力,能分析和解读出一些现象产生的原因,同时需要针对这些问题,提出一些可能的应对方案,以便对业务策略或者商业方向上有更多的指导。

一些专业领域分析,如网络安全分析,金融领域分析。这些领域的分析,通常需要用领域知识,深入现象背后去挖掘出产生的原因,不仅要具有很强的分析能力,也需要很强的领域知识。

2.3 算法挖掘

知识星球.jpeg

做为数据科学中的重头戏,便是数据挖掘和机器学习了。在线电商中的个性推荐技术,商业与银行中的欺骗检测,智能手机中语音识别(Siri),机器翻译,图像识别等等。

涉及大量机器学习算法,包括分类、聚类和个性推荐等常用数据挖掘技术。也包括数据分析的很多基础,和数据分析偏重的报表产出并不同,并不强调产出大量的报表,通常是在现有数据基础上的产出新数据,用于服务业务系统。

还可以推广到人工智能,其中涉及大量的数据处理与挖掘技术。比如机器人,无人驾驶,总之是尽量的在某些领域达到或者超过人类。人类能处理如下内容:

Number: 数据(数)
NLP: 自然语言处理(文字)
Pic: 图像处理(图片)
Voice: 语音识别(语音)
Video: 视频处理(视频)
个性推荐: (集体智慧与社交化)

其中会用到大量的机器学习算法,包括深度学习,从而达到服务人类的目的。

03 生态与周边

关于数据的统计、分析与挖掘,这些概念的侧重点不一样。数据统计,利用统计学的知识,产出数据和报表;数据分析,除了产出数据和报表外,还需要分析其中原因,最好能找出对应的策略;数据挖掘,需要在数据分析的基础上,发现新的,有价值的知识及潜在的规律。如果只是对原有的数据进行统计分析,而没有对未知的事物进行预测,是不算数据挖掘。

数据相关的职位各种各样,我们要构建数据场时,抽取其中的各种技能出来,组成自己的技能表。最近读到一篇文章:《机器学习职位需要的七个关键技能》

英文原文地址:
http://bigdata-madesimple.com/7-key-skills-required-for-machine-learning-jobs/
中文翻译地址:
http://www.36dsj.com/archives/29515?utm_source=tuicool&utm_medium=referral

文章描述了机器学习需要的七个技能,以及需要这些技能的原因,主要技能如下:

  1. 编程语言(Python/C++/R/Java);
  2. 概率与统计;
  3. 应用数学与算法;
  4. 分布式计算;
  5. Unix/Linux工具集;
  6. 高级信号处理技术(特征提取);
  7. 大量阅读,适应快速变化,更新自己;

在下一篇文章中,我将描述我所认识的建立数据场的七大技能,欢迎继续关注。


知识星球.jpeg
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容