岭回归解决多重共线

概括

岭回归是一种简约模型,执行L2正则化。L2正则化添加的惩罚相当于回归系数的平方,并试图将它们最小化。岭回归的方程如下所示:

LS Obj + λ (sum of the square of coefficients)

这里的目标如下:

  1. 如果 λ = 0,则输出类似于简单线性回归。
  2. 如果 λ = 非常大,回归系数将变为零。

训练岭回归模型

要在R中构建岭回归,会用到glmnet包中的glmnet函数。使用mtcars数据集来进行对里程的预测。

# Loaging the library
library(glmnet)
# Getting the independent variable
x_var <- data.matrix(mtcars[, c("hp", "wt", "drat")])
# Getting the dependent variable
y_var <- mtcars[, "mpg"]

# Setting the range of lambda values
lambda_seq <- 10^seq(2, -2, by = -.1)
# Using glmnet function to build the ridge regression in r
fit <- glmnet(x_var, y_var, alpha = 0, lambda  = lambda_seq)
# Checking the model
summary(fit)
# Output
          Length Class     Mode
a0         41    -none-    numeric
beta      123    dgCMatrix S4
df         41    -none-    numeric
dim         2    -none-    numeric
lambda     41    -none-    numeric
dev.ratio  41    -none-    numeric
nulldev     1    -none-    numeric
npasses     1    -none-    numeric
jerr        1    -none-    numeric
offset      1    -none-    logical
call        5    -none-    call
nobs        1    -none-    numeric

选择最佳Lambda值

glmnet 函数会针对所有不同的 lambda 值多次训练模型,我们将这些值作为向量序列传递给 glmnet 函数的 lambda 参数。接下来的任务是自动使用 cv.glmnet() 函数来识别能够导致最小误差的最优 lambda 值。这可以通过交叉验证来实现,交叉验证有助于评估模型在新的、未见过的数据上的泛化能力。

以下是使用 cv.glmnet() 进行岭回归交叉验证的示例:

# Using cross validation glmnet
ridge_cv <- cv.glmnet(x_var, y_var, alpha = 0, lambda = lambdas)
# Best lambda value
best_lambda <- ridge_cv$lambda.min
best_lambda
# Output
[1] 79.43000

使用K折交叉验证决定最佳模型

最佳模型可以通过从交叉验证对象中调用 glmnet.fit 来提取。根据Dev值来决定最佳模型,这里可以通过将 lambda 设置为 79.43000 来重新构建模型。

best_fit <- ridge_cv$glmnet.fit
head(best_fit)
# Output
      Df   %Dev    Lambda
 [1,]  3 0.1798 100.00000
 [2,]  3 0.2167  79.43000
 [3,]  3 0.2589  63.10000
 [4,]  3 0.3060  50.12000
 [5,]  3 0.3574  39.81000
 [6,]  3 0.4120  31.62000

建立最后的模型

# Rebuilding the model with optimal lambda value
best_ridge <- glmnet(x_var, y_var, alpha = 0, lambda = 79.43000)

确认回归系数

coef(best_ridge)
# Output
4 x 1 sparse Matrix of class "dgCMatrix"
                      s0
(Intercept) 20.099502946
hp          -0.004398609
wt          -0.344175261
drat         0.484807607

如果事先有划分训练集和验证集的话也可以通过R2值来检查模型拟合度

# here x is the test dataset
pred <- predict(best_ridge, s = best_lambda, newx = x)

# R squared formula
actual <- test$Price
preds <- test$PreditedPrice
rss <- sum((preds - actual) ^ 2)
tss <- sum((actual - mean(actual)) ^ 2)
rsq <- 1 - rss/tss
rsq
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,490评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,581评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,830评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,957评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,974评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,754评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,464评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,847评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,995评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,137评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,819评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,482评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,023评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,149评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,409评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,086评论 2 355

推荐阅读更多精彩内容