Core ML 介绍与实践

1. core ML简介

CoreML让你将很多机器学习模型集成到你的app中。除了支持层数超过30层的深度学习之外,还支持决策树的融合,SVM(支持向量机),线性模型。由于其底层建立在Metal 和Accelerate等技术上,所以可以最大限度的发挥CPU和GPU的优势。你可以在移动设备上运行机器学习模型,数据可以不离开设备直接被分析。

  • Vision:这部分是关于图像分析和图像识别的。
    其中包括人脸追踪,人脸识别,航标(landmarks),文本识别,区域识别,二维码识别,物体追踪,图像识别等。
    其中使用的模型包括:Places205-GoogLeNet,ResNet50,Inception v3,VGG16,SqueezeNet。
    这些模型最小的5M,最大的550M,集成压力较大。

  • Natural Language Processing:这部分是自然语言处理的API。
    包括语言识别,分词,词性还原,词性判定,实体辨识。

结构
结构.png
支持模型
模型.png

支持模型.png
模型转换
3rd model convert.png
应用场景
应用场景.png
优缺点

优点:将机器学习带到移动设备上,简单易开发
缺点:不支持模型再训练和联合学习

总结
  • Model 极速集成
  • 支持多种数据类型
  • 硬件优化
  • 适配主流机器学习框架

2.Vision

Vision 使用

将各种功能的 Request 提供给一个 RequestHandler,Handler 持有图片信息,并将处理结果分发给每个 Request 的 completion Block 中。可以从 results 属性中得到 Observation 数组,然后进行更新 UI 等操作。因为 completion Block 所执行的队列跟 perform request 的队列相同,所以更新 UI 时记得使用主队列。

Vision 操作流水线分为两类:分析图片和跟踪队列。可以使用图片检测出的物体或矩形结果(Observation)来作为跟踪队列请求(Request)的参数。


analyzing.png
tracking.png
支持图片类型

CVPixelBufferRef
CGImageRef
CIImage
NSURL
NSData

总结
  • 一个关于计算机视觉的顶层新框架。
  • 多重跟踪检测。
  • 集成 Core ML 轻松使用 model

3.core ML实践

模型使用

把 MLMODEL 文件拖拽到 Xcode 工程中,勾选对应的 target, Xcode 自动生成对应代码。生成的类名就是 MLMODEL 文件名,输入和输出的变量名和类型也可以在 Xcode 中查看。

模型使用.png

demo地址

4.相关框架

metal

Metal是与OpenGL ES是并列的,它们都是应用对GPU访问的底层接口。而Metal则提供了更底层,更面向硬件的接口,这也是为何Apple给这个框架起名为“Metal”的原因。

mps

mps即 Metal Performance Shaders 是MetalKit iOS9新增的类,可以使用GPU进行高效的图像计算,比如高斯模糊,图像直方图计算,索贝尔边缘检测算法等。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,194评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,058评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,780评论 0 346
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,388评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,430评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,764评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,907评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,679评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,122评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,459评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,605评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,270评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,867评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,734评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,961评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,297评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,472评论 2 348

推荐阅读更多精彩内容