欢迎关注R语言数据分析指南
最近看到一张非常有意思的图,暂且称之为饼状热图,与
corrplot
所绘制的有所不同此图使用的为离散型变量,例图如下所展示;由于作者未提供原始数据,小编自己构建了一份数据来进行初步的展示
论文内容
Systematic profiling of the chicken gut microbiome reveals dietary supplementation with antibiotics alters expression of multiple microbial pathways with minimal impact on community structure
此图乍一看觉得似曾相识,但是仔细一看又会发现好像不是那么的容易;应该是没有现成的包来一步出图,由于作者也未有提供数据那只有靠猜数据结构来进行可视化了,
细节当然是很多,小编这次只是绘制主体图,细节问题留待以后再做介绍
加载R包
library(tidyverse)
library(scatterpie)
library(ggsci)
library(cowplot)
数据清洗
p <- read_tsv("data1.txt") %>%
filter(Compartments %in% c("BS","RS","RE","VE","SE","LE")) %>%
select(1,2,Compartments) %>%
left_join(.,read_tsv("data2.txt") %>% column_to_rownames(var="FAPROTAX") %>% t() %>%
as.data.frame() %>%
rownames_to_column(var="Compartments") %>%
pivot_longer(-Compartments),by="Compartments") %>%
filter(Compartments=="BS",
SampleID %in% c(read_tsv("data1.txt") %>% select(1) %>%
distinct() %>% head(10) %>% pull())) %>%
select(-value,-Compartments) %>%
group_by(SampleID,name) %>% count(Phylum) %>%
pivot_wider(.,names_from=Phylum,values_from = n)
构建绘图数据
df <- p %>% left_join(.,p %>% select(name) %>% distinct() %>% rownames_to_column(var="lat"),by="name") %>%
mutate(long=case_when(SampleID =="BCCCK1" ~1,SampleID =="BCCCK2" ~2,SampleID =="BCCCK3" ~3,
SampleID =="BCCNPK1" ~4,SampleID =="BCCNPK2" ~5,SampleID =="BCCNPK3" ~6,
SampleID =="BCCNPKM1" ~7,SampleID =="BCCNPKM2" ~8,SampleID =="BCCNPKM3" ~9,
SampleID =="BHLCK1" ~10),lat=as.numeric(lat))
绘制饼状热图
p1 <- ggplot(aes(x=long,y=lat),data=df) +
geom_tile(color="black",fill="white")+
geom_scatterpie(aes(x=long,y=lat,r=0.4),data=df, color=NA,
cols=c("Abditibacteriota","Acidobacteriota","Actinobacteriota",
"Alphaproteobacteria","Bacteroidota")) +
coord_equal()+
scale_fill_brewer()+
scale_x_discrete(expand = c(0,0))+
scale_y_discrete(expand = c(0,0))+
theme_test()+
theme(axis.text.x=element_text(angle = 90,vjust = 0.5,hjust = 1),
axis.ticks = element_blank(),
axis.text.y=element_blank(),
axis.title = element_blank(),
legend.title = element_blank(),
legend.key=element_blank(), # 图例键为空
legend.text = element_text(color="black",size=9), # 定义图例文本
legend.spacing.x=unit(0.1,'cm'), # 定义文本书平距离
legend.key.width=unit(0.5,'cm'), # 定义图例水平大小
legend.key.height=unit(0.5,'cm'), # 定义图例垂直大小
legend.background=element_blank())
绘制文本
p2 <- df %>% select(name,lat) %>% arrange(lat) %>% mutate(type="A") %>%
ggplot(aes(type,name))+
coord_cartesian(clip="off")+
scale_x_discrete(expand = c(0,0))+
# scale_y_discrete(expand = c(0,0))+
theme(panel.background = element_rect(fill="white"),
axis.ticks = element_blank(),
axis.text.y=element_text(color="black"),
axis.title=element_blank(),axis.text.x=element_blank())
拼图
ggdraw(xlim=c(-0.45,1))+
draw_plot(p2,x=-0.4)+
draw_plot(p1,x=0.06)