Python强大的pyecharts绘画优美图形<二>

常用图形:柱形图-折线图-饼图-散点图

from pyecharts import Line, Bar, Pie, EffectScatter
# 数据
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[5, 20, 36, 10, 10, 100]
v2 =[55, 60, 16, 20, 15, 80]

柱形图

bar = Bar('柱形图', '库存量')
bar.add('服装', attr, v1,  is_label_show=True)
bar.show_config()
bar.render(path='./data/01-01柱形图.html')

bar2 = Bar("显示标记线和标记点")
bar2.add('商家A', attr, v1, mark_point=['avgrage'])
bar2.add('商家B', attr, v2, mark_point=['min', 'max'])
bar2.show_config()
bar2.render(path='./data/01-02标记点柱形图.html')

bar3 = Bar("水平显示")
bar3.add('商家A', attr, v1)
bar3.add('商家B', attr, v2, is_convert=True)
bar3.show_config()
bar3.render(path='./data/01-03水平柱形图.html')

对应的图像如下


01-01柱形图.png

01-02标记点柱形图.png

01-03水平柱形图.png

折线图

# 普通折线图
line = Line('折线图')
line.add('商家A', attr, v1, mark_point=['max'])
line.add('商家B', attr, v2, mark_point=['min'], is_smooth=True)
line.show_config()
line.render(path='./data/01-04折线图.html')

# 阶梯折线图
line2 = Line('阶梯折线图')
line2.add('商家A', attr, v1,  is_step=True, is_label_show=True)
line2.show_config()
line2.render(path='./data/01-05阶梯折线图.html')

# 面积折线图
line3 =Line("面积折线图")
line3.add("商家A", attr, v1, is_fill=True, line_opacity=0.2,   area_opacity=0.4, symbol=None, mark_point=['max'])
line3.add("商家B", attr, v2, is_fill=True, area_color='#a3aed5', area_opacity=0.3, is_smooth=True)
line3.show_config()
line3.render(path='./data/01-06面积折线图.html')

对应图形如下


01-04折线图.png

01-05阶梯折线图.png

01-06面积折线图.png

柱形图-折线图

# 柱形图-折线图
from pyecharts import Bar, Line, Overlap

att = ['A', 'B', 'C', 'D', 'E', 'F']
v3 = [10, 20, 30, 40, 50, 60]
v4 = [38, 28, 58, 48, 78, 68]

bar = Bar("柱形图-折线图")
bar.add('bar', att, v3)
line = Line()
line.add('line', att, v4)

overlap = Overlap()
overlap.add(bar)
overlap.add(line)
overlap.show_config()
overlap.render(path='./data/01-066柱形图-折线图.html')
01-066柱形图-折线图.png

饼图

# 饼图
pie = Pie('饼图')
pie.add('芝麻饼', attr, v1, is_label_show=True)
pie.show_config()
pie.render(path='./data/01-07饼图.html')

# 玫瑰饼图
pie2 = Pie("饼图-玫瑰图示例", title_pos='center', width=900)
pie2.add("商品A", attr, v1, center=[25, 50], is_random=True, radius=[30, 75], rosetype='radius')
pie2.add("商品B", attr, v2, center=[75, 50], is_random=True, radius=[30, 75], rosetype='area', is_legend_show=False, is_label_show=True)
pie2.show_config()
pie2.render(path='./data/01-08玫瑰饼图.html')
01-07饼图.png

01-08玫瑰饼图.png

散点图

静态散点图

from pyecharts import  Scatter
# 散点图
v1 =[10, 20, 30, 40, 50, 60]
v2 =[10, 20, 30, 40, 50, 60]
scatter =Scatter("散点图示例")
scatter.add("A", v1, v2)
scatter.add("B", v1[::-1], v2)
scatter.show_config()
scatter.render(path='./data/03-06散点图.html')

# 散点打印Pyecharts字体 白底图片
scatter =Scatter("散点图示例")
v1, v2 = scatter.draw("./data/two.jpg")
scatter.add("pyecharts", v1, v2, is_random=True)
scatter.show_config()
scatter.render(path='./data/03-06打印字体.html')
03-06散点图.png

动态散点图

from pyecharts import EffectScatter
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[5, 20, 36, 10, 10, 100]
v2 =[55, 60, 16, 20, 15, 80]

# 动态散点图
es =EffectScatter("动态散点图")

# v1 x坐标 v2 y坐标
es.add("商家", v1, v2)
es.show_config()
es.render('./data/01-09散点图.html')

# 动态散点图各种图形
es = EffectScatter("动态散点图各种图形")
es.add("", [10], [10], symbol_size=20, effect_scale=3.5,  effect_period=3, symbol="pin")
es.add("", [20], [20], symbol_size=12, effect_scale=4.5, effect_period=4,symbol="rect")
es.add("", [30], [30], symbol_size=30, effect_scale=5.5, effect_period=5,symbol="roundRect")
es.add("", [40], [40], symbol_size=10, effect_scale=6.5, effect_brushtype='fill',symbol="diamond")
es.add("", [50], [50], symbol_size=16, effect_scale=5.5, effect_period=3,symbol="arrow")
es.add("", [60], [60], symbol_size=6, effect_scale=2.5, effect_period=3,symbol="triangle")
es.show_config()
es.render(path = "./data/01-10动态散点图各种图形.html")

图片为动图,效果很炫


01-09散点图.png

01-10动态散点图各种图形.png

综合图

多个饼图

from pyecharts import Pie
pie =Pie('各类电影中"好片"所占的比例', "数据来着豆瓣", title_pos='center')
pie.add("", ["剧情", ""], [25, 75], center=[10, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None, )
pie.add("", ["奇幻", ""], [24, 76], center=[30, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None, legend_pos='left')
pie.add("", ["爱情", ""], [14, 86], center=[50, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["惊悚", ""], [11, 89], center=[70, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["冒险", ""], [27, 73], center=[90, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["动作", ""], [15, 85], center=[10, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["喜剧", ""], [54, 46], center=[30, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["科幻", ""], [26, 74], center=[50, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["悬疑", ""], [25, 75], center=[70, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["犯罪", ""], [28, 72], center=[90, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None, is_legend_show=True, legend_top="center")
pie.show_config()
pie.render(path='./data/01-多个饼图.html')
多个饼图.png

多标记柱形图

from pyecharts import Bar
attr =["{}月".format(i) for i in range(1, 13)]
v1 =[2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
v2 =[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
bar =Bar("柱状图示例")
bar.add("蒸发量", attr, v1, mark_line=["average"], mark_point=["max", "min"])
bar.add("降水量", attr, v2, mark_line=["average"], mark_point=["max", "min"])
bar.show_config()
bar.render(path='./data/02-多标记柱形图.html')
02-多标记柱形图.png

支持保存做种格式
对象.render(path='snapshot.html')
对象.render(path='snapshot.png')
对象.render(path='snapshot.pdf')
举个栗子:

bar = Bar("我的第一个图表", "这里是副标题")
bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90])
# bar.print_echarts_options()
bar.render(path='snapshot.html')
bar.render(path='snapshot.png')
bar.render(path='snapshot.pdf')

pyecharts绘画优美图形<一>:最全地图
pyecharts绘画优美图形<二>:柱形图-折线图-饼图
pyecharts绘画优美图形<三>:仪表盘 - 漏斗图 - 关系图 - 水球 - 极坐标 - 雷达
pyecharts绘画优美图形<四>:词云--支持中文

关注公众号:Python疯子 后台回复: pyecharts 获取源代码
分享最实用的Python功能,欢迎您的关注


Python疯子.jpg
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,640评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,254评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,011评论 0 355
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,755评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,774评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,610评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,352评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,257评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,717评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,894评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,021评论 1 350
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,735评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,354评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,936评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,054评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,224评论 3 371
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,974评论 2 355

推荐阅读更多精彩内容

  • 图表有几个要素: 图表类型 图表颜色 字体大小以及颜色 绘制图表的注意点 图表设计原则 一. 图表类型 比较常用的...
    醉起萧寒阅读 7,475评论 0 21
  • 图表思维是数据分析思维中的最简单和最基本的思维,主要是通过图形和表格对数据进行转化。 文字有局限 看到这段话,你会...
    keeya阅读 5,665评论 1 21
  • 第一部分-使用统计图的好处 案例1:短跑比赛结果展示 某天,稻草人公司举行员工100米短跑比赛,进入决赛的有小李,...
    帅春风阅读 1,924评论 0 4
  • 写在前面 ggplot2 是一个功能强大且灵活的R包 ,由Hadley Wickham 编写,其用于生成优雅的图...
    Boer223阅读 28,096评论 0 67
  • 一、你需要知道的一组数据 你知道吗? 中国人均阅读量仅为4本!是韩国三分之一、是法国五分之一、是日本十分之一、是以...
    李晓峰Jeffrey阅读 204评论 0 0