比赛及资源 summary

https://luna16.grand-challenge.org/download/  -> downloaded on centos-purley-no101-1


前列腺 (prostate)

Dataset :

https://promise12.grand-challenge.org/details/ -> downloaded on self notebook

MRI format

Code: VNet

tools:

    Evaluation of prostate segmentation algorithms for MRI The PROMISE12.pdf

    Computer-aided diagnosis of prostate cancer with MRI.pdf

    A survey of prostate segmentation methodologies.pdf


脑部相关的

Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions笔记

https://blog.csdn.net/sunyao_123/article/details/73927653

为了评定一个新的开发的深度学习方法的效果,有必要将它与现在最好的方法作比较。这里提到很多数据集,https://www.nitrc.org/projects/msseg,brain MRI are Brain Tumor Segmentation (BRATS), Ischemic Stroke Lesion Segmentation(ISLES), Mild Traumatic Brain Injury Outcome Prediction(mTOP), Multiple Sclerosis Segmentation (MSSEG), Neonatal Brain Segmentation (NeoBrainS12), and MR Brain Image Segmentation (MRBrainS)。

Brats 这个脑肿瘤图像分割挑战联合MICCAI会议,自从2012年开始每年举办,为了评估现在最好的脑部肿瘤分割方法,并且比较不同方法。为此,很多的数据集被公开,有5类label:脑部健康组织,坏死区,水肿区,肿瘤的加强和非加强区。并且训练集每年都在增长。最近的Brats 2015–2016比赛中训练集包含220个高等级子集和54个低等级子集,测试集包含53个混合子集。所有的数据集被校准为同样的解剖模板,并且被插值为1 mm 3的分辨率。每个数据集包含增强前T1和增强后T1,T2,T2磁共振成像液体衰减反转恢复序列MRI体素。联合配准,头骨分离,标注的训练集,算法的评价结果可以通过Virtual Skeleton Database (https://www.virtualskeleton.ch/)来获取.

Isles 这个挑战被组织来评估,在精确MRI扫描图像中,中风病变及临床结果预测。提供了包含大量的精确中风样例和相关临床参数的MRI扫描。联合的被标记的真实数据是最终损伤的区域(任务一),用了3到9个月的跟踪扫描来人工标记,和表示残疾度的临床mRM得分(任务二)。在ISLES2016比赛中,35个训练集和40个测试集通过SMIR平台公开。(https://www.smir.ch/ISLES/Start2016). 亚急性缺血性卒中病变分割的获胜者的算法结果为0. 59±0.31(骰子相似性系数,DSC)和37.88±30.06(豪斯多夫距离,HD)。

mTOP 这个挑战要求算法找到健康组织和外伤性脑损伤(TBI)病人的差异,并且使用非监督方法将给定的数据分为明显不同的类。开源MRI数据在https://tbichallenge.wordpress.com/data下载。

MSSEG 这个挑战的目的是从MS数据的参赛者中评定最好的最新的分割方法,为此他们评估了在一个在多中心临床数据库(4个数据中心的38个病人,为1.5T或者3T的图像,每个病人被7个专家手动标记)上的损伤区域检测(多少个病变区被检测出)和分割(被勾出的损伤区精确度如何)。除了这个经典的评估外,他们提供了一个共同的基础设施来评价算法,比如运行时间和自动化度的比较。数据可以从https://portal.fli-iam.irisa.fr/msseg-challenge/data下载。

NeoBrainS12 这个比赛的的目的是,通过使用脑部T1和T2的MRI图像,来比较新生脑组织分割算法和对应大小的测量。在以下结构比较:皮质和中央灰质,无髓有髓白质,脑干和小脑,脑室和脑外间隙脑脊液。训练数据包括两个30周到40周大小的婴儿的T1和T2MR图像。测试集包括5个婴儿的T1和T2 MRI图像。数据和算法的评估结果已经被提交,可以从http://neobrains12.isi.uu.nl/下载。

MRBrainS 这个评估架构的目的是比较脑部多序列(T1加权,T1加权反转恢复,磁共振成像液体衰减反转恢复序列,FLAIR)3T MRI图像,灰质,白质,脑脊髓液的分割算法。训练集包括5个手动分割的脑部MRI图像,测试集包括15份MRI图像。数据可以从http://mrbrains13.isi.uu.nl下载。在这个数据集上的获胜者的算法的结果(骰子相似系数,DSC):灰质86.15%,白质89.46%,脑脊髓液84.25%。


Brats2017, 面向GLIOMAS

Dataset https://www.med.upenn.edu/sbia/brats2017/data.html

Nii format

preprocessing: https://github.com/ANTsX/ANTs

Tools:https://www.med.upenn.edu/cbica/captk/

code:
    Unet: https://ai.intel.com/biomedical-image-segmentation-u-net/
    3D-Unet: https://github.com/ellisdg/3DUnetCNN

Paper:

    Brain Tumor Segmentation with Deep Neural Networks_1505.03540.pdf
    MICCAI_BraTS_2017_proceedings_shortPapers.pdf  --> all algorithm summary
    The Multimodal Brain Tumor Image Segmentation Benchmark.pdf --> good introducing about Brats dataset
    Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features.pdf

T1, T1c, T2, FLAIR ???



https://camelyon17.grand-challenge.org/

淋巴癌, 乳腺癌

Dataset:

Code:

Tools:



乳腺癌

http://www.bioimaging2015.ineb.up.pt/dataset.html

Dataset:

Code:

Tools:

Paper:
    Classification of breast cancer histology using CNN.pdf




宫颈癌TCT

Dataset:

Code:

Tools:

Paper:





肺结节

//www.greatytc.com/p/9c1facf70b01

Dataset:

LIDC-IDRI

Code:

Tools:

Paper:


数据预处理


CT

MRI

脑部相关

http://www.360doc.com/content/18/0119/22/42715024_723486417.shtml

The image datasets used in the study all share the following four MRI contrasts (Fig. 2).

1) T1: T1-weighted, native image, sagittal or axial 2D acquisitions, with 1–6 mm slice thickness.

2) T1c: T1-weighted, contrast-enhanced (Gadolinium)

image, with 3D acquisition and 1 mm isotropic voxel size

for most patients.

3) T2: T2-weighted image, axial 2D acquisition, with 2–6 mm

slice thickness.

4) FLAIR: T2-weighted FLAIR image, axial, coronal, or

sagittal 2D acquisitions, 2–6 mm slice thickness.


病理切片??

      通常可以得到各种scale的图片,一般医生使用20x-40x的分辨率做图像分析




https://blog.csdn.net/zxllll8898/article/details/76040426

https://blog.csdn.net/u013635029/article/details/72957944

https://blog.csdn.net/a8039974/article/details/77964764

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,951评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,606评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,601评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,478评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,565评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,587评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,590评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,337评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,785评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,096评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,273评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,935评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,578评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,199评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,440评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,163评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,133评论 2 352

推荐阅读更多精彩内容