random

random.random()

random.uniform(a, b)

random.choice(seq)

random.randrange(start, stop, step)

生成一个从start到stop(不包括stop),间隔为step的一个随机整数。start、stop、step都要为整数,且start

random.sample(p, k)

从p序列中,随机获取k个元素,生成一个新序列。sample不改变原来序列。

random.shuffle(x)

把序列x中的元素顺序打乱。shuffle直接改变原有的序列。 x改变!



np.random:

1np.random.rand(3,2)  3行2列的随机数组

2np.random.randn(2,3)  2行3列的标准正态分布数组

3randint(low[, high, size])返回随机的整数,位于半开区间 [low, high)。size=(3.,2.)

>>> np.random.randint(2, size=10)

array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])

>>> np.random.randint(1, size=10)

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

random_integers(low[, high, size])返回随机的整数,位于闭区间 [low, high]。size=(3.,2.)

random_sample([size])返回随机的浮点数,在半开区间 [0.0, 1.0)。

>>> np.random.random_sample()

0.47108547995356098

(b - a) * random_sample() + a

[-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5array([[-3.99149989, -0.52338984],

      [-2.99091858, -0.79479508],

      [-1.23204345, -1.75224494]])

生成[0,1)之间的浮点数

numpy.random.random_sample(size=None)

numpy.random.random(size=None)

numpy.random.ranf(size=None)

numpy.random.sample(size=None)

numpy.random.seed()

np.random.seed()的作用:使得随机数据可预测。

当我们设置相同的seed,每次生成的随机数相同。如果不设置seed,则每次会生成不同的随机数




www.mamicode.com/info-detail-507676.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,122评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,070评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,491评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,636评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,676评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,541评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,292评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,211评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,655评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,846评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,965评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,684评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,295评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,894评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,012评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,126评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,914评论 2 355

推荐阅读更多精彩内容

  • 在python数据分析的学习和应用过程中,经常需要用到numpy的随机函数,由于随机函数random的功能比较多,...
    leenard阅读 45,949评论 5 13
  • 我们可以先来了解下伪随机数和真随机数的概念。 伪随机数:伪随机数是用确定性的算法计算出来自[0,1]均匀分布的随机...
    a479a910abe7阅读 2,484评论 0 0
  • 时不时的用到随机数,主要是自带的random和numpy的random,每次都靠猜,整理一下 random pyt...
    账号已删除阅读 25,890评论 0 5
  • numpy.random.randint Return random integers fromlow(inclu...
    onepedalo阅读 1,185评论 0 1
  • 书名《所谓情商高,就是会沟通》 57/263 在与人沟通的过程中,应该学会观察他的眼神,语言,手势,表情,说话的口...
    呓语与轻喃阅读 119评论 0 0