BiLSTM模型中CRF层的运行原理-1

本文框架如下:

介绍——在命名实体识别任务中,BiLSTM模型中CRF层的通用思想

详细的实例——通过实例来一步步展示CRF的工作原理

实现——CRF层的一步步实现过程

谁可以读本文——本文适用与NLP初级入门者或者AI其他相关领域

需要有的基础知识:你只需要知道什么是命名实体识别,如果你不懂神经网络,条件随机场(CRF)或者其它相关知识,不必担心,本文将向你展示CRF层是如何工作的。本文将尽可能的讲的通俗易懂。

1.介绍

        基于神经网络的方法,在命名实体识别任务中非常流行和普遍。在文献【1】中,作者提出了Bi-LSTM模型用于实体识别任务中,在模型中用到了字嵌入和词嵌入。本文将向你展示CRF层是如何工作的。

        如果你不知道Bi-LSTM和CRF是什么,你只需要记住他们分别是命名实体识别模型中的两个层。

1.1开始之前

        我们假设我们的数据集中有两类实体——人名和地名,与之相对应在我们的训练数据集中,有五类标签:

        B-Person, I- Person,B-Organization,I-Organization, O

       假设句子x由五个字符w1,w2,w3,w4,w5组成,其中【w1,w2】为人名类实体,【w3】为地名类实体,其他字符标签为“O”。

1.2BiLSTM-CRF模型

        以下将给出模型的结构:

        第一,句子x中的每一个单元都代表着由字嵌入或词嵌入构成的向量。其中,字嵌入是随机初始化的,词嵌入是通过数据训练得到的。所有的嵌入在训练过程中都会调整到最优。

        第二,这些字或词嵌入为BiLSTM-CRF模型的输入,输出的是句子x中每个单元的标签。


图1. Bi-LSTM结构图

        尽管一般不需要详细了解BiLSTM层的原理,但是为了更容易知道CRF层的运行原理,我们需要知道BiLSTM的输出层。


图2.Bi-LSTM标签预测原理图

        如上图所示,BiLSTM层的输出为每一个标签的预测分值,例如,对于单元w0,BiLSTM层输出的是1.5 (B-Person), 0.9 (I-Person), 0.1 (B-Organization), 0.08 (I-Organization) and 0.05 (O). 这些分值将作为CRF的输入。

1.3 如果没有CRF层会怎样

        你也许已经发现了,即使没有CRF层,我们也可以训练一个BiLSTM命名实体识别模型,如图3.所示:


图3.去除CRF的BiLSTM命名实体识别模型

        由于BiLSTM的输出为单元的每一个标签分值,我们可以挑选分值最高的一个作为该单元的标签。例如,对于单元w0,“B-Person”有最高分值—— 1.5,因此我们可以挑选“B-Person”作为w0的预测标签。同理,我们可以得到w1——“I-Person”,w2—— “O” ,w3——“B-Organization”,w4——“O”。

        虽然我们可以得到句子x中每个单元的正确标签,但是我们不能保证标签每次都是预测正确的。例如,图4.中的例子,标签序列是“I-Organization I-Person” and “B-Organization I-Person”,很显然这是错误的。


图4. 去除CRF层的BiLSTM模型

1.4CRF层能从训练数据中获得约束性的规则

        CRF层可以为最后预测的标签添加一些约束来保证预测的标签是合法的。在训练数据训练过程中,这些约束可以通过CRF层自动学习到。

这些约束可以是:

I:句子中第一个词总是以标签“B-“ 或 “O”开始,而不是“I-”

II:标签“B-label1 I-label2 I-label3 I-…”,label1, label2, label3应该属于同一类实体。例如,“B-Person I-Person” 是合法的序列, 但是“B-Person I-Organization” 是非法标签序列.

III:标签序列“O I-label” is 非法的.实体标签的首个标签应该是 “B-“ ,而非 “I-“, 换句话说,有效的标签序列应该是“O B-label”。

有了这些约束,标签序列预测中非法序列出现的概率将会大大降低。

参考文献:【1】

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,639评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,277评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,221评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,474评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,570评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,816评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,957评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,718评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,176评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,511评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,646评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,322评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,934评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,755评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,987评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,358评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,514评论 2 348

推荐阅读更多精彩内容

  • 翻译自http://xueshu.baidu.com/s?wd=paperuri%3A%28a56c446f2f5...
    Jlan阅读 10,151评论 0 16
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,633评论 18 139
  • 1. Java基础部分 基础部分的顺序:基本语法,类相关的语法,内部类的语法,继承相关的语法,异常的语法,线程的语...
    子非鱼_t_阅读 31,598评论 18 399
  • 2017-2-24 如果没什么问题我们就确定这个啦 嗯~就这个套餐啦 那两位这边做个登记,付一下定金就好啦,两位的...
    株絮飞飞阅读 478评论 0 0
  • 等我老了,就去找你 再不用惧怕现实的羁绊 再不用顾虑世俗的责难 我迈着蹒跚的步履 远远望见你身影摇曳 在小路上颤颤...
    月宛央阅读 351评论 4 3