最长公共子序列和最长公共子串

最长公共子序列和最长公共子串区别

最长公共子串(Longest CommonSubstring)和最长公共子序列(LongestCommon Subsequence, LCS)的区别:子串(Substring)是串的一个连续的部分,子序列(Subsequence)则是从不改变序列的顺序,而从序列中去掉任意的元素而获得的新序列;更简略地说,前者(子串)的字符的位置必须连续,后者(子序列LCS)则不必。比如字符串acdfg同akdfc的最长公共子串为df,而他们的最长公共子序列是adf。LCS可以使用动态规划法解决。下文具体描述。

最长公共子序列

问题描述:一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X= { x1, x2,…, xm},则另一序列Z= {z1, z2,…, zk}是X的子序列是指存在一个严格递增的下标序列 {i1, i2,…, ik},使得对于所有j=1,2,…,k有 Xij=Zj。例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。给定两个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。例如,若X= { A, B, C, B, D, A, B}和Y= {B, D, C, A, B, A},则序列{B,C,A}是X和Y的一个公共子序列,序列{B,C,B,A}也是X和Y的一个公共子序列。而且,后者是X和Y的一个最长公共子序列,因为X和Y没有长度大于4的公共子序列。给定两个序列X= {x1, x2, …, xm}和Y= {y1, y2, … , yn},要求找出X和Y的一个最长公共子序列。
问题解析:设X= { A, B, C, B, D, A, B},Y= {B, D, C, A, B, A}。求X,Y的最长公共子序列最容易想到的方法是穷举法。对X的多有子序列,检查它是否也是Y的子序列,从而确定它是否为X和Y的公共子序列。由集合的性质知,元素为m的集合共有2^m个不同子序列,因此,穷举法需要指数级别的运算时间。进一步分解问题特性,最长公共子序列问题实际上具有最优子结构性质。
设序列X={x1,x2,……xm}和Y={y1,y2,……yn}的最长公共子序列为Z={z1,z2,……zk}。则有:
(1)若xm=yn,则zk=xm=yn,且zk-1是Xm-1和Yn-1的最长公共子序列。
(2)若xm!=yn且zk!=xm,则Z是Xm-1和Y的最长公共子序列。
(3)若xm!=yn且zk!=yn,则Z是X和Yn-1的最长公共子序列。
其中,Xm-1={x1,x2……xm-1},Yn-1={y1,y2……yn-1},Zk-1={z1,z2……zk-1}。
递推关系:用c[i][j]记录序列Xi和Yj的最长公共子序列的长度。其中,Xi={x1,x2……xi},Yj={y1,y2……yj}。当i=0或j=0时,空序列是xi和yj的最长公共子序列。此时,c[i][j]=0;当i,j>0,xi=yj时,c[i][j]=c[i-1][j-1]+1;当i,j>0,xi!=yj时,
c[i][j]=max{c[i][j-1],c[i-1][j]},由此建立递推关系如下:


构造最优解:由以上分析可知,要找出X={x1,x2,……xm}和Y={y1,y2,……yn}的最长公共子序列,可以按一下方式递归进行:当xm=yn时,找出xm-1和yn-1的最长公共子序列,然后在尾部加上xm(=yn)即可得X和Y的最长公共子序列。当Xm!=Yn时,必须解两个子问题,即找出Xm-1和Y的一个最长公共子序列及X和Yn-1的一个最长公共子序列。这两个公共子序列中较长者为X和Y的最长公共子序列。设数组b[i][j]记录c[i][j]的值由哪一个子问题的解得到的,从b[m][n]开始,依其值在数组b中搜索,当b[i][j]=1时,表示Xi和Yj的最长公共子序列是由Xi-1和Yj-1的最长公共子序列在尾部加上xi所得到的子序列。当b[i][j]=2时,表示Xi和Yj的最长公共子序列与Xi-1和Yj-1的最长公共子序列相同。当b[i][j]=3时,表示Xi和Yj的最长公共子序列与Xi和Yj-1的最长公共子序列相同。

最长公共子串

求字串的方法和求子序列方法类似:
当str1[i] == str2[j]时,子序列长度veca[i][j] = veca[i - 1][j - 1] + 1;只是当str1[i] != str2[j]时,veca[i][j]长度要为0,而不是max{veca[i - 1][j], veca[i][j - 1]}。

参考文章

http://blog.csdn.net/v_july_v/article/details/6695482

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容