2020 时序分析(17)

machine_learning.jpg

平稳的时间序列

所谓平稳性时间序列,虽然每一 t 时刻随机变量都是独立,但是他们具有相似性,都服从相似的分布,所以才能够研究时间序列。

这里我们想一想如何计算相邻两个随机变量间自协方差,和其自己做协方差相关系数,原来对于 x 在 1 时刻只有一个观测值,因为在不同时刻 X 分布近似,我们通过借用其他时刻的随机变量观测值来组成一个向量表示随机样本。借用其他时刻前提就是需要我们时间序列平稳,这也就是我们为什么要研究平稳性的原因。
\begin{bmatrix} x_1,x_2,\dots, x_t \end{bmatrix}
通过上面方法我们还可以得到另一个 2 时刻 X 随机样本。
\begin{bmatrix} x_2,x_3,\dots, x_{t+1} \end{bmatrix}

因为是平稳序列,我们之前已经知道平稳序列的一个特点也就是跨度相同时间序列随机变量间的自相关系数相同。在平稳时间序列中,时间距离比较近随机变量间的自相关系数要大于距离较远随机变量间的相关系数。

平稳时间序列的统计性质

  • 常数均值和方差
  • 自协方差函数和自相关函数只依赖于时间的平移长度,而与时间的起止点无关
    • 延迟 k 自协方差函数
      \gamma(k) = \gamma(t,t+k),\forall k 为整数
      两个随机变量之间协方差与起点无关,只与他们之间跨度有关,大家理解一下。

    • 延迟 k 自相关系数
      \rho_k = \frac{\gamma(k)}{\gamma(0)}
      \rho_k = \frac{\gamma(k)}{\sqrt{DX_t}\sqrt{DX_s}}
      DX = EX^2 - (EX)^2 = cov(X,X)
      自己对自己方差就是协方差,这个概率论中知识,没有什么好说的。因为是跨越 0 步所以 \sqrt{\gamma(0) \gamma(0) } = \gamma(0) 从而得到

      \rho_k = \frac{\gamma(k)}{\gamma(0)}

平稳时间序列的重大意义

  • 极大减少了随机变量的个数,并增加了待估计变量的样本容量
  • 极大地简化了时序分析的难度,同时也提高了对特征统计量的估计精度。

检验时间序列的平稳性

上面我们说了通过假定为平稳的时间序列更加便于研究,那么如何判断一个时间序列是平稳的时间序列呢,这就是接下来我们要讨论的内容。

  • 第一种方法就是通过画图来直接观察,首先看图点是不是有趋势,也就是是不是随着时间总体有向上或向下的趋势,这样曲线就是不平稳性,然后在看有没有明显周期
  • 第二种方法就是求自相关系数,我们上面讨论的延迟步数,也就是两个随机变量在时间上的平移长度。

随机性检验

我们这里所说随机性检验是建立在平稳序列基础之上,只有满足了平稳性。如果是随机就说明随机变量间没有信息的传递。如果序列是随机,那么随机变量就没有可以分析价值,但是并不是说我们就没有办法了,这里还有一本书随机过程来处理随机序列。这是一门研究生课程用于专门研究随机过程。随机时间序列也是可以看作白噪声,接下来我们数学方式描述一下
EX_t = \mu , \forall t \in T
\gamma(t,s) = \begin{cases} \sigma^2 \, t = s \\ 0 \, t \neq s \forall t,s \in T \end{cases}
从上面来看自相关系数为 0 表示没有每一两个随机变量间都是没有关系的,也就是信息向下传递。图像处理,研究一些波或者信号处理都用到白噪声。
检验白噪声就是检验序列是否为平稳的,只有平稳时间序列才能算上平稳时间序列。

\gamma(k) = 0 \, \forall k \neq 0

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,951评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,606评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,601评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,478评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,565评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,587评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,590评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,337评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,785评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,096评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,273评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,935评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,578评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,199评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,440评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,163评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,133评论 2 352