1、介绍
在这个接口里只能有一个抽象方法,它们主要应用在Lambda表达式上。
Java 8为函数式接口引入了一个新注解@FunctionalInterface,主要用于编译级错误检查,加上该注解,当你写的接口不符合函数式接口定义的时候,编译器会报错。
例如:定义一个函数式接口
@FunctionalInterface
public class MyFunctionalInterface(){
void sendMsg(String msg);
}
然后就可以使用Lambda表达式来表示该接口的一个实现(注:JAVA 8 之前一般是用匿名类实现的):
String msgtset = "您有新的消息";
MyFunctionalInterface myFunctionalInterface = msg -> {
Syste.out.println("消息通知:"+msg);
}
myFunctionalInterface.sendMsg(msgtset);
由此可见,Lambda表达式返回的是一个实例对象
以下介绍的时候Java8新增的四大函数式接口的使用:
Comsumer接口(消费型:有参数无返回值)
(1)源码
@FunctionalInterface
public interface Consumer<T> {
/**
* Performs this operation on the given argument.
*
* @param t the input argument
*/
void accept(T t);
/**
* Returns a composed {@code Consumer} that performs, in sequence, this
* operation followed by the {@code after} operation. If performing either
* operation throws an exception, it is relayed to the caller of the
* composed operation. If performing this operation throws an exception,
* the {@code after} operation will not be performed.
*
* @param after the operation to perform after this operation
* @return a composed {@code Consumer} that performs in sequence this
* operation followed by the {@code after} operation
* @throws NullPointerException if {@code after} is null
*/
default Consumer<T> andThen(Consumer<? super T> after) {
Objects.requireNonNull(after);
return (T t) -> { accept(t); after.accept(t); };
}
}
该接口包含了两个方法:accept和andThen
注:andThen使用了default关键字来修饰,default是Java8引入的新特性,对于使用default修饰的方法,在编写其接口实现类的时候,无需再重新实现该方法
Objects.requireNonNull(after):
当after对象为null的时候,会立即抛出异常,而不是等到使用到after的时候才抛出NullPointExecption空指针异常
(2)使用案例:
当使用lamda表达式实例化Comsumer类的时候,默认实现的是accept方法,例如
Comsumer<String> con1 = message -> {System.out.println("系统启动成功:"+"message");}
Comsumer<String> con2 = message -> {System.out.println("系统启动失败:"+"message");}
然后就可以通过con对象直接调用上文实现了的accept方法,输出字符串
con1.accept("测试结果");
con2.accept("测试结果");
或者,也可以Consumer类的andThen方法,来顺序调用consumer实例对象
con1.andThen(con2).accept("测试结果");
输出结果:
系统启动成功:测试结果
系统启动失败:测试结果
Suplier接口(供给型:无参数,有返回值)
(1)源码
/**
* Represents a supplier of results.
*
* <p>There is no requirement that a new or distinct result be returned each
* time the supplier is invoked.
*
* <p>This is a <a href="package-summary.html">functional interface</a>
* whose functional method is {@link #get()}.
*
* @param <T> the type of results supplied by this supplier
*
* @since 1.8
*/
@FunctionalInterface
public interface Supplier<T> {
/**
* Gets a result.
*
* @return a result
*/
T get();
}
该接口仅有一个抽象方法get
(2)使用案例
Random ran = new Random();
Supplier<Integer> sup = () -> {
ran.nextInt(10);
}
System.out.println(sup.get());
输出结果:[随机数]
Function(函数型:有参数,有返回值)
(1)源码
/**
* Represents a function that accepts one argument and produces a result.
*
* <p>This is a <a href="package-summary.html">functional interface</a>
* whose functional method is {@link #apply(Object)}.
*
* @param <T> the type of the input to the function
* @param <R> the type of the result of the function
*
* @since 1.8
*/
@FunctionalInterface
public interface Function<T, R> {
/**
* Applies this function to the given argument.
*
* @param t the function argument
* @return the function result
*/
R apply(T t);
/**
* Returns a composed function that first applies the {@code before}
* function to its input, and then applies this function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param <V> the type of input to the {@code before} function, and to the
* composed function
* @param before the function to apply before this function is applied
* @return a composed function that first applies the {@code before}
* function and then applies this function
* @throws NullPointerException if before is null
*
* @see #andThen(Function)
*/
default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
Objects.requireNonNull(before);
return (V v) -> apply(before.apply(v));
}
/**
* Returns a composed function that first applies this function to
* its input, and then applies the {@code after} function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param <V> the type of output of the {@code after} function, and of the
* composed function
* @param after the function to apply after this function is applied
* @return a composed function that first applies this function and then
* applies the {@code after} function
* @throws NullPointerException if after is null
*
* @see #compose(Function)
*/
default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t) -> after.apply(apply(t));
}
/**
* Returns a function that always returns its input argument.
*
* @param <T> the type of the input and output objects to the function
* @return a function that always returns its input argument
*/
static <T> Function<T, T> identity() {
return t -> t;
}
}
从源码可以看到,Function接口类只有一个抽象方法apply需要实现,同时也有一个类似Comsumer类的andThen方法,但是和Comsumer类相比,Function类还多了一个default方法compose和static方法identify
compose和andThen相反,andThen是先执行调用者,再执行参数;compose是先执行参数,再执行调用者
identify则是返回当前调用的方法
(2)使用案例
public static void main(String[] args) {
Function<Integer, Integer> times2 = i -> i*2;
Function<Integer, Integer> squared = i -> i*i;
System.out.println(times2.apply(4)); //8
System.out.println(squared.apply(4)); //16
//先4×4然后16×2,先执行apply(4),在times2的apply(16),先执行参数,再执行调用者。
System.out.println(times2.compose(squared).apply(4)); //32
//先4×2,然后8×8,先执行times2的函数,在执行squared的函数。
System.out.println(times2.andThen(squared).apply(4)); //64
System.out.println(Function.identity().compose(squared).apply(4)); //16
}
Predicate(断言式,返回值为布尔类型)
(1)源码
/**
* Represents a predicate (boolean-valued function) of one argument.
*
* <p>This is a <a href="package-summary.html">functional interface</a>
* whose functional method is {@link #test(Object)}.
*
* @param <T> the type of the input to the predicate
*
* @since 1.8
*/
@FunctionalInterface
public interface Predicate<T> {
/**
* Evaluates this predicate on the given argument.
*
* @param t the input argument
* @return {@code true} if the input argument matches the predicate,
* otherwise {@code false}
*/
boolean test(T t);
/**
* Returns a composed predicate that represents a short-circuiting logical
* AND of this predicate and another. When evaluating the composed
* predicate, if this predicate is {@code false}, then the {@code other}
* predicate is not evaluated.
*
* <p>Any exceptions thrown during evaluation of either predicate are relayed
* to the caller; if evaluation of this predicate throws an exception, the
* {@code other} predicate will not be evaluated.
*
* @param other a predicate that will be logically-ANDed with this
* predicate
* @return a composed predicate that represents the short-circuiting logical
* AND of this predicate and the {@code other} predicate
* @throws NullPointerException if other is null
*/
default Predicate<T> and(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) && other.test(t);
}
/**
* Returns a predicate that represents the logical negation of this
* predicate.
*
* @return a predicate that represents the logical negation of this
* predicate
*/
default Predicate<T> negate() {
return (t) -> !test(t);
}
/**
* Returns a composed predicate that represents a short-circuiting logical
* OR of this predicate and another. When evaluating the composed
* predicate, if this predicate is {@code true}, then the {@code other}
* predicate is not evaluated.
*
* <p>Any exceptions thrown during evaluation of either predicate are relayed
* to the caller; if evaluation of this predicate throws an exception, the
* {@code other} predicate will not be evaluated.
*
* @param other a predicate that will be logically-ORed with this
* predicate
* @return a composed predicate that represents the short-circuiting logical
* OR of this predicate and the {@code other} predicate
* @throws NullPointerException if other is null
*/
default Predicate<T> or(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) || other.test(t);
}
/**
* Returns a predicate that tests if two arguments are equal according
* to {@link Objects#equals(Object, Object)}.
*
* @param <T> the type of arguments to the predicate
* @param targetRef the object reference with which to compare for equality,
* which may be {@code null}
* @return a predicate that tests if two arguments are equal according
* to {@link Objects#equals(Object, Object)}
*/
static <T> Predicate<T> isEqual(Object targetRef) {
return (null == targetRef)
? Objects::isNull
: object -> targetRef.equals(object);
}
}
该接口有一个抽象方法test需要实现,该方法传入参数为泛型,返回值只能是boolean类型
另外还有三个default方法:and,or,negate和一个static方法isEqual
and:对两个断言式接口类的实例化对象进行与操作
or:对两个断言式接口类的实例化对象进行或操作
negate:对两个断言式接口类的实例化对象进行非操作
isEqual:返回一个比较目标值是否相等的Predicate实例对象,可以比较null值
(2)使用案例
String s1 = "ABC";
String s2 = null;
System.out.println(Predicate.isEqual(null).test(s2)); //true
System.out.println(Predicate.isEqual("ABC").test(s1)); //true
System.out.println(Predicate.isEqual(s2).test(s1)); //false
System.out.println(Predicate.isEqual(s1).test(s2)); //false
System.out.println(Predicate.isEqual(null).and(Predicate.isEqual("ABC")).test(s2)); //false
System.out.println(Predicate.isEqual(null).or(Predicate.isEqual("ABC")).test(s2)); //true
System.out.println(s2.equals(s1)); //java.lang.NullPointerException
System.out.println(s1.equals(s2)); //false
System.out.println(Predicate.isEqual(null).test(null)); //true
可见,使用Predicate的isEqual方法进行判断的时候,不会出现空指针异常,书写代码时无需考虑空指针错误