机器学习入门(3)--(单变量)线性回归算法

申明:此文章内容来自于 Doctor AndrewNG的视频,经过编辑而成

例子:预测住房价格

数据集包含俄勒冈州波特兰市的住房价格 在这里 我要根据不同房屋尺寸所售出的价格 画出我的数据集 比方说 我们来看这个数据集:

房屋大小与价格数据集

用图形化表示如下:

房屋大小与价格图形表示

你有一个朋友正想出售自己的房子(1250平方尺)。如果预测 这房子能卖多少钱,那么你可以构建一个模型。也许是条直线 从这个数据模型上来看 也许你可以告诉你的朋友 他能以大约220000(美元)左右的价格 卖掉这个房子,如图:

线性模型的预测结果

这个过程可以用下图进行表示:


机器学习&应用过程

概念

上面的问题是一个线性回归问题,回归一词指的是我们根据之前的数据预测出一个准确的输出值。回归问题很明显属于监督学习,因此方法和监督学习应该是一样的,先给定一个训练集,根据这个训练集学习出一个线性函数,然后测试这个函数训练的好不好(即此函数是否足够拟合训练集数据),挑选出最好的函数。因为是单变量线性回归,我们能够给出单变量线性回归的模型:

单变量线性回归模型

注意:

(1)因为是线性回归,所以学习到的函数为线性函数,即直线函数;

(2)因为是单变量,因此只有一个x;

下面讲述如何找到与给定的数据相拟合的把最有可能的直线。

为了描述方便,做如下约定:

m代表训练集中实例的数量

x代表特征/输入变量

y代表目标变量/输出变量

(x,y)代表训练集中的实例

(x(i),y(i))代表第i个观察实例

hθ(代表学习算法的解决方案或函数也称为假设,是一个从x到y的函数映射,简写为h

找最合适的直线问题演变成如何选择这两个参数值θ0和θ1 ,似的模型与数据集拟合的最好。

我们的思路是:能使h(x) 即输入x时我们预测的值 最接近该样本对应的y值的参数θ0,θ1。 因此,在线性回归其实是一个最小化问题。用( x(i),y(i) )代表第i个样本 所以我想要做的是对所有训练样本进行一个求和:对i=1到i=M的样本 将对假设进行预测得到的结果,对于房价预测问题,此时的输入是第i号房子的面积 ,将第i号对应的预测结果,减去第i号房子的实际价格,所得的差的平方相加得到总和。

而我希望尽量减小这个值,也就是预测值和实际值的差的平方误差和,而为了让表达式的数学意义 变得容易理解一点,我们实际上考虑的是 这个数的1/2m。因此 简单地说 我们正在把这个问题变成 找到能使 我的训练集中预测值和真实值的差的平方的和 的1/2M最小的θ0和θ1的。用下面公式进行描述,这个就是我们定义的代价函数,代价函数也被称作平方误差函数

单变量线性回归Cost Function

事实上,我们之所以要求出误差的平方和, 是因为误差平方代价函数对于大多数问题特别是回归问题都是一个合理的选择 还有其他的代价函数也能很好地发挥作用 但是平方误差代价函数可能是解决回归问题最常用的手段了。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容