基因选择压力分析 | Ka/Ks, Dn/Ds 大规模计算,更快更准!

写在前面

来来去去,这个主题相关的,我已经写过很多个推文,甚至还包括与Raindy(福建农林高芳銮老师)合作开发和发表了 EasyCodeML。只能说,确实是一个相对常见但似乎也繁杂的分析。

功能开发

  • EasyCodeML 主要用于在进化的context上分析选择压力,尤其是做正选择位点分析,亦即,关注到位点。
  • 简单的基因对Ka/Ks计算,如 TBtools 的 Simple Ka Ks Calculator 则关注大规模的基因受选择的情况,亦即,关注到基因。

正选择位点分析起来不容易,而大规模的基因对Ka/Ks计算起来其实也不容易。常见的场景是有数万,甚至十来万个基因对,需要计算KaKs。而做计算的步骤:

  1. 以密码子为单位进行序列比对
  2. 基于比对结果进行KaKs计算

所以是两部。绝大多数人会使用一些软件,如muscle,mafft等做基因双序列比对,因为他们调用起来放弃,尽管这其实不太合适。因为这些软件本身设计目标是多序列比对。用于CodeML的计算应该使用他们,但是用于两条序列的两两比对,缺并不合适。所以最好的方式基本只有:

  1. 调用Emboss的Needle程序
  2. 使用已有第三方实现
  3. 自行做代码实现

其中第一种方法最准但是最慢,第二种方法在Java,python,perl等上面没有良好实现,一般不够准确,甚至不如调用muscle等,第三种方法可以权衡,毕竟是自己做代码实现。
而现在,TBtools用的即第三种方法,准确度上跟Emboss Needle完全一致,但由于是原生代码实现,所以速度很快,同时也支持多线程。

运行速度

针对调用muscle的实现,前述已经提过,大体是一秒钟一对序列,多线程无法提速,甚至会降速(怀疑是进程开销太大),而针对TBtools的原生代码实现(也就是说,我自己coding的),那么单线程一秒钟可以做到200对,如果开四个线程,那么一秒钟可以做到 600对(多线程开销其实并不小)。
实测数据,10000个基因对,muscle调用需要四个多小时。使用TBtools,单线程只需要不到一分钟。如果开四个线程,28秒。
换句话说,常规电脑上去,1w个基因对的计算,一般不需要1分钟。

使用方法

打开 TBtools,跳转到对应功能



使用方式和以前一样,就是记得调整使用的线程数。。。


写在最后

天下武功,唯快不破。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容