R文本分析(三)

主题模型训练

############################################

library(lda)

corpus <- lexicalize(sample.words, lower=TRUE)

num.topics <- 4#4个主题

## Initialize the params

params <- sample(c(-1, 1), num.topics, replace=TRUE)

poliblog.ratings<- sample(c(-100, 100), 207, replace=TRUE)

result <- slda.em(documents=corpus$documents,

K=num.topics,

vocab=corpus$vocab,

num.e.iterations=30,

num.m.iterations=12,

alpha=1.0, eta=0.1,

poliblog.ratings / 100,

params,

variance=0.25,

lambda=1.0,

logistic=FALSE,

method="sLDA")

## Make a pretty picture.

Topics <- apply(top.topic.words(result$topics, 8, by.score=TRUE),

2, paste, collapse=" ")

aa=length(Topics)

t=c()

for(i in 1:aa)

{t[i]=paste(i,Topics[i],sep="")}

a=apply(result$document_sums,

1,sum)

names(a)<-t

p=data.frame(a=t,b=a)

p=p[order(p[,2],decreasing=T),]

a1=c()

c=c("a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"

,"za","zb","zc","zd")

for(i in 1:aa)

{

a1[i]= paste(c[i],p$a[i],sep="")

}

p1=data.frame(a=a1,主题得分=p$b)

library(ggplot2)

ggplot(data=p1, aes(x=a, y=主题得分, fill=主题得分)) +

geom_bar(colour="black", stat="identity") +

labs(x = "主题", y = "得分") + ggtitle("文档主题排名顺序")+ coord_flip()

Topics <- top.topic.words(result$topics, 20, by.score=TRUE)

a=c()

b=c()

for(i in 1:5)

{

a=c(a,Topics[,i])

b=c(b,rep(paste("主题",i,sep=""),20))

}

a = table(a, b)

a = as.matrix(a)

library(wordcloud)

comparison.cloud(a, scale = c(1, 1.5), rot.per = 0.5, colors = brewer.pal(ncol(a),

"Dark2"))

主题1:金融主题2 :禅道主题3 :军事主题4 科技

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容

  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,457评论 0 23
  • 背景 一年多以前我在知乎上答了有关LeetCode的问题, 分享了一些自己做题目的经验。 张土汪:刷leetcod...
    土汪阅读 12,743评论 0 33
  • 我在两个多月前关闭了朋友圈,原因也是一样,每次发个圈就忍不住看看谁会点赞留言。而正像我对很多人发的内容不感兴趣一样...
    川川人那些事阅读 255评论 0 0
  • 699的线上写作课 6月1日,第1节课,结束半小时后观看人次高达10,000多人 6月5日,第2节课,结束半小时后...
    成长猫古月阅读 807评论 0 1
  • 情不敢至深,恐大梦一场。缘何以维系?能了生生业报。冥冥中求佛,却只闻得一声声“不可说,不可说,不知,不可知。”哪管...
    NY_RUNNING阅读 367评论 0 0