分库分表 结合 分布式id生成算法

采用twitter的snowflake 思想 生成一个自增(趋势自增 不连续)的id生成算法

Twitter的分布式自增ID算法snowflake 结构如下(每部分用-分开):

   0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000

第1位 正负标记 id一般为正数 为0

接下来的41位为毫秒级时间,不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)

   41位的长度可以使用69年( (1 << 41) / (1000L * 60 * 60 * 24 * 365) = 69   )

接下来5位datacenterId和5位workerId,代表分布式节点(10位的长度最多支持部署 (1<<10=1024)个节点)

最后12位是毫秒内的计数(12位的计数顺序号支持每个节点每毫秒产生(1<<12=4096)个ID序号)

一共加起来刚好64位,为一个Long型。(转换成字符串长度为18)


分库分表

一对一情况

这个没啥好说的 最简单的方法 按照id来取模即可

一对多情况

例如 一个用户 user(uid) 发表多个帖子 topic(tid,uid)

当帖子数据量过多时,topic需要分表(分库也是同样的原理)

  • 如果按照uid来分表 则根据tid要快速查看一个帖子的详细时候,需要扫描全部的表
  • 如果按照tid来分表 则要查看某个用户所有的帖子时候 需要扫描全部的表

上述两种方案都不完美,虽然可以新增一张表(或索引)来快速定位,但需要经过两次查询,影响效率

这里给出种权衡的方案:

  • 假设topic分为16张表(最好为2的幂次方)
  • 当用户id为 uid=12345 发表一个帖子的时候,对uid=12345 取16模 得9,二进制为mod=(1001)
  • 生成tid的时候,根据上面的 snowflake 算法生成前60位数据,后四位为mod(1001),得到tid
  • 这样 根据uid 可以定位到表,根据tid也能定位到表
  • 数据均衡度 每个用户发表的topic数均衡,每个表中的数据一般都是均衡的

多对多情况

这种情况就比较复杂了,还是要根据具体业务来分表
比如说订单系统中,有买家表 buyer(bid),卖家表 seller(sid),订单表 order(oid,bid,sid)
一般不会根据oid来分库,因为根据oid来查询数据的实际情况很少(买家,卖家至少都会登入一个)
可以适当的数据冗余,根据bid维度,存一个库,同时根据sid维度来存一个库
优势:卖家,买家要查自己订单时候,都能快速定位到具体的库中;
劣势:数据冗余

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容