Linux-实模式和保护模式
实模式
那究竟实模式是什么呢?
在计算机上面,实模式存在的时间非常之短,所以一般我们是感觉不到它的存在的。CPU复位(reset)或加电(power on)的时候就是以实模式启动,在这个时候处理器以实模式工作,不能实现权限分级,也不能访问20位以上的地址线,也就是只能访问1M内存。之后一般就加载操作系统模块,进入保护模式。
处理器8086 有 20 根地址线(不清楚8086的童鞋,可以自行百度,这可处理器非常有名,资料也很多),可以寻址 1MB 内存。但是,它内部的寄存器16 位的,无法在程序中访问整个 1MB 内存。所以,它也是第一款支持内存分段模型的处理器。还有, 8086 处理器只有一种工作模式,即实模式。当然,在那时,还没有实模式这一说。
由于 8086 处理器的成功,推动着 Intel 公司不断地研发更新的处理器, 32 位的时代就这样到来了。尽管 8086 是 16 位的处理器,但它也是 32位架构内的一部分。原因在于, 32 位的处理器架构是从 8086 那里发展来的,是基于 8086 的,具有延续性和兼容性。
32位处理器有自己的 32 位工作模式。在本系列文章中,保护模式其实就是32位模式。在这种模式下,可以完全、充分地发挥处理器的性能。同时,在这种模式下,处理器可以使用它全部的 32根地址线,能够访问4GB 内存。
实模式的寻址方式与工作机理
其实,8086的段寄存器和IP寄存器都是16位的,如果按照原先的方式,把段寄存器的内容和偏移地址直接相加来形成物理地址的话,也只能得到 16 位的物理地址。麻烦的是,8086却提供了20根地址线。换句话说,它提供的是20位的物理地址。
提供 20 位地址线的原因很简单, 16 位的物理地址只能访问 64KB 的内存,地址范围是0000H~FFFFH,共 65536 个字节。这样的容量,即使是在那个年代, 也显得捉襟见衬。
所以,65536个字节就是64KB,而 20 位的物理地址则可以访问多达1MB的内存,地址范围从 00000H到FFFFFH。问题是,16 位的段地址和 16 位的偏移地址相加,只能形成 16 位的物理地址,怎么得到这 20位的物理地址呢?
**为了解决这个问题,8086 处理器在形成物理地址时,先将段寄存器的内容左移 4 位(相当于乘以十六进制的10,或者十进制的 16),形成 20 位的段地址,然后再同16位的偏移地址相加,得到20位的物理地址。比如,对于逻辑地址 F000H:052DH,处理器在形成物理地址时,将段地址F000H左移 4 位,变成 F0000H,再加上偏移地址052DH,就形成了20位的物理地址 F052DH。**
这样,因为段寄存器是16位的,在段不重叠的情况下,最多可以将1MB的内存分成65536个段,段地址分别是0000H、0001H、0002H、0003H,……,一直到FFFFH。
一个地址有段和偏移两部分组成,物理地址的计算公式为:
物理地址(physicaladdress)=段值(segment) * 16 + 偏移(offset)
其中,segment和offset都是16位的。
在这种模式下,系统计算实际地址的时候是按照对1M求模的方式进行的,这种技术被称为wrap-around。也就是说,当程序员给出超过1M(100000H-10FFEFH)的地址时,因为逻辑上正常,系统并不认为其访问越界而产生异常,而是自动从0开始计算。
保护模式
相比于实模式的优点
实模式下,用户可以操作整个物理地址空间,这样就加大了非法操作的风险,会导致系统崩溃。
而在保护模式下,引入了分段的方法,保护了地址空间。
实现原理
保护模式:段+偏移,这里的段并不是实模式中的段(实模式下,段值还是可以看作是地址的一部分,比如段值为xxxxh表示以xxxx0h开始的一段内存),而是一个索引,这个索引指向的是一个数据结构(GDT 全局描述符,也可能是LDT)
在实模式下,段地址并非真实的物理地址,在计算物理地址时,还要左移 4 位(乘以 16)。和实模式不同,在 32 位保护模式下,段地址是 32 位的线性地址,如果未开启分页功能,该线性地址就是物理地址。