使用 Porcupine 进行线性一致性测试

测试分布式系统的线性一致性这篇文章里面,提到了一个用 Go 实现的线性一致性验证系统:Porcupine,这里简单介绍一下。Porcupine 是基于 Faster linearizability checking via P-compositionality 这篇 paper,具体这篇 paper 是怎样的,我数学不好,没法深入理解,如果有谁研究了,欢迎交流 :sob:。

Porcupine 的使用非常简单,他就两个验证函数,CheckOperations 和 CheckEvents,其实这两个差不多,我一般直接使用了 Event,所以这里就用 CheckEvents 来举例说明了。

Event

Event 的定义如下:

type Event struct {
    Kind  EventKind
    Value interface{}
    Id    uint
}

Kind 是 event 的类型,就两种,Call 和 Return,因为我们的任何操作,其实就是先发起一个 request,也就是 Call,然后收到 response,也就是 Return。Value 是一个 interface,也就是我们自己实际操作的 request 或者 response。Id 就是这个 event 的标识,request 和 response 必须用相同的 Id。假设我们实现一个简单的 Key-Value store,就只会对一个 key 操作,定义 request 和 response 如下:

type Request struct {
    // 0 for read, 1 for put
    Op int
    // put value
    Value int
}

type Resposne struct {
    // for read value
    Value int
    // for put ok
    Ok bool
}

那么,一个 event history 可能如下:

Event {EventKind: CallEvent, Value: Request { Op: 0 }, Id: 1 }
Event {EventKind: CallEvent, Value: Request { Op: 1, Value: 10 }, Id: 2 } 
Event {EventKind: ReturnEvent, Value: Response { Value: 5 }, Id: 1 }
Event {EventKind: ReturnEvent, Value: Response { Ok: true }, Id: 2 }

然后,我们将对应的 event list 扔给 CheckEvents 函数,就能知道这个 history 是否是线性一致性的了。那么,CheckEvents 是如何判断的呢?这里,我们就需要为相应的测试 case 定制自己的 model。

Model

在 Porcupine 里面,Model 的定义如下:

type Model struct {
    // Initial state of the system.
    Init func() interface{}
    // Step function for the system. Returns whether or not the system
    // could take this step with the given inputs and outputs and also
    // returns the new state. This should not mutate the existing state.
    Step func(state interface{}, input interface{}, output interface{}) (bool, interface{})
}

上面我们去掉了一些无关的 field function,主要关注两个,Init 和 Step。Init 是整个系统初始的状态,譬如对于我们上面的 case,我们可以让 Init 函数 return 5。重点关注的是 Step 函数,Step 其实就是一个状态机变更,它会根据当前 event 的 input 和 output 尝试从一个 state 变更到另一个 state。返回 true 就标明变更成功,进入一个新的状态了。那对我们上面的 key-value case 来说,Step 函数可以写成:

func Step(state interface{}, input interface{}, output interface{}) (bool, interface{})
        st := state.(int)
        inp := input.(Request)
        out := output.(Response)
        // for read
        if inp == 0 {
            return st == out.Value, st
        }
        
        // for write
        if !out.ok {
            return true, st
        }
        return out.ok, inp.value

对于 read request 来说,只有读出来的值跟上一次的状态值一致,我们才返回 true,而对于 write 来说,如果成功了,就返回新的状态。

对于前面的 event history,显而易见,是线性一致的,但如果我们换成这样:

Event {EventKind: CallEvent, Value: Request { Op: 0 }, Id: 1 }
Event {EventKind: CallEvent, Value: Request { Op: 1, Value: 10 }, Id: 2 } 
Event {EventKind: ReturnEvent, Value: Response { Value: 5 }, Id: 1 }
Event {EventKind: ReturnEvent, Value: Response { Ok: true }, Id: 2 }
Event {EventKind: CallEvent, Value: Request { Op: 0 }, Id: 3 }
Event {EventKind: ReturnEvent, Value: Response { Value: 5 }, Id: 3 }

那么显而易见,这并不是线性一致性的,因为操作 3 在读取之前,2 一定写入了新的值。

Timeout

上面的例子很简单,但在实际的分布式环境中,一个操作,我们有三种状态,成功,失败,当然还有超时。譬如一个写操作超时了,那么它到底写没有写进去,我们是没有办法判断的。对于这样的 event,我们只能让 Porcupine 认为,它会在 invoke time 或者 infinite time 之间的任何一个点完成,也就是,如果我们碰到了一个是 timeout 的 response,我们应该暂存起来,然后在整个 history 的最后,才把这个 response 加进去,这样 Porcupine 才能正确处理。

具体到上面的 key-value 例子,我们在 Response 上面添加一个 Unknown 字段,如果一个 response 是 unknown 的,我们也会认为它在 Step 的时候能返回 true,所以对于 write,就是 return out.Ok || out.Unknown, inp.Value

我们在最后才将这种 Unknown 的 response 放到 history 里面,譬如:

Event {EventKind: CallEvent, Value: Request { Op: 0 }, Id: 1 }
Event {EventKind: CallEvent, Value: Request { Op: 1, Value: 10 }, Id: 2 } 
Event {EventKind: ReturnEvent, Value: Response { Value: 5 }, Id: 1 }
Event {EventKind: ReturnEvent, Value: Response { Unknown: true }, Id: 2 }

如果把 Unknown 放到中间加入到 history 里面,Porcupine 是不知道如何去检测的。

小结

上面简单了介绍了 Porcupine 的使用,可以看到非常的简单。既然我们现在有了一个用 Go 实现的分布式线性一致性验证框架,那么下一步事情就非常的明了了,将 Porcupine 加入到一个分布式测试框架里面,提供一套类似 jepsen 的 Go 解决方案。虽然 Jepsen 很强大,而且 TiDB 也有 Jepsen 的 case,但相对于 Jepsen 用的 clojure,还是 Go 最舒服。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,383评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,522评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,852评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,621评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,741评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,929评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,076评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,803评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,265评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,582评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,716评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,395评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,039评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,027评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,488评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,612评论 2 350

推荐阅读更多精彩内容