AnnData是python中存储单细胞数据的一种格式
1. AnnData数据结构:
主要包含四个slots:
X
contains the expression matrix.
obsm
contains the embeddings data.
obs
contains the cell metadata.
var
contains the gene metadata.
adata
# AnnData object with n_obs × n_vars = 2638 × 1838
# obs: 'n_genes', 'n_genes_by_counts', 'total_counts', 'total_counts_mt', 'pct_counts_mt', 'leiden', 'louvain', 'louvain_anno'
# var: 'gene_ids', 'n_cells', 'mt', 'n_cells_by_counts', 'mean_counts', 'pct_dropout_by_counts', 'total_counts', 'highly_variable', 'means', 'dispersions', 'dispersions_norm', 'mean', 'std'
# uns: 'hvg', 'leiden', 'leiden_colors', 'neighbors', 'pca', 'rank_genes_groups', 'umap', 'draw_graph', 'diffmap_evals', 'louvain', 'paga', 'louvain_sizes', 'louvain_colors', 'leiden_sizes'
# obsm: 'X_pca', 'X_umap', 'X_draw_graph_fa', 'X_diffmap'
# varm: 'PCs'
# obsp: 'connectivities', 'distances'
# 查看帮助文档和数据类型
help(adata)
type(adata.var["gene_ids"])
# pandas.core.series.Series
-
.X
这个部分储存的是矩阵信息,数据结构是numpy array
,和seurat对象一样,基因variable *细胞observation的稀疏矩阵。
但是.X的结构ndarray,是一个数组,是没有行名列名消息的。行名和列名消息存储在.obs和.var里。
调取矩阵信息:
import scvelo as scv
scv.DataFrame(adata.X)
-
.obs
存储的是细胞的信息,数据结构是pandas dataframe
。
相当于Seurat对象中的metadata
adata.obs
访问其中的一个属性,就通过普通的dataframe来访问:
adata.obs['n_genes']
AAACATACAACCAC-1 781
AAACATTGAGCTAC-1 1352
AAACATTGATCAGC-1 1131
AAACCGTGCTTCCG-1 960
AAACCGTGTATGCG-1 522
...
TTTCGAACTCTCAT-1 1155
TTTCTACTGAGGCA-1 1227
TTTCTACTTCCTCG-1 622
TTTGCATGAGAGGC-1 454
TTTGCATGCCTCAC-1 724
Name: n_genes, Length: 2638, dtype: int64
查看有多少cluster/细胞亚群...
adata.obs['clusters'].unique()
-
.var
存储的是基因的信息,数据结构是pandas dataframe
。
adata.var
访问其中一个属性的方法和.obs一样
-
.uns
存储的是后续添加的非结构信息,数据结构是dict
,有序字典。
adata.uns['leiden']
# {'params': {'resolution': 1, 'random_state': 0, 'n_iterations': -1}}
adata.uns['leiden_colors']
# array(['#1f77b4', '#ff7f0e', '#279e68', '#d62728', '#aa40fc', '#8c564b', '#e377c2', '#b5bd61'], dtype=object)
这个uns的部分不是针对行/列的,而是针对行和列标注的参数的(暂时这么理解),在上述中pbmc的obs中有louvain观测,那么在uns中就是运行louvain算法的参数。是以哈希形式存储的。
-
obsm
对观测的多维的注释,m指的就是multi-dim多个维度。它是2-多维的ndarray,长度为n_obs。(obs是一个维度可以都放在一个数据框下)
adata.obsm
# AxisArrays with keys: X_pca, X_umap, X_draw_graph_fa
print(adata.obsm['X_pca'].shape,adata.obsm['X_umap'].shape)
adata.obsm['X_pca']
# (2638, 50) (2638, 2)
# array([[-5.5562196 , -0.257729 , 0.18678935, ..., -0.33962035,
# 1.482267 , 1.8977386 ],
# [-7.209527 , -7.4819927 , -0.1626957 , ..., -1.9776347 ,
# -1.5584233 , -1.4961302 ],
# [-2.694437 , 1.5836601 , 0.6631187 , ..., 0.543645 ,
# -0.54527736, -4.3395023 ],
# ...,
# [-0.78539336, -6.718588 , -1.5988318 , ..., -0.5611978 ,
# -0.10546814, 0.58385324],
# [ 0.2812712 , -5.921852 , -1.1628692 , ..., -1.3820586 ,
# 3.5802112 , 1.2988565 ],
# [-0.09076688, -0.66350466, -0.13485757, ..., 0.37319255,
# 0.75012326, -0.6659836 ]], dtype=float32)
-
varm
对特征的多维的注释,与obsm相对。
adata.varm
# AxisArrays with keys: PCs
print(adata.varm['PCs'].shape)
adata.varm['PCs']
# (1838, 50)
# array([[-2.6014808565e-02, 3.2541397959e-03, 1.8978352891e-03, ...,
# -5.1610143855e-03, 1.4520395547e-02, -6.6632591188e-04],
# [-8.2782376558e-03, 9.0831620619e-03, -7.8140682308e-04, ...,
# 3.0852310359e-02, -8.9336717501e-03, -2.8796317056e-03],
# [-3.3151865937e-03, 3.2096833456e-03, 2.7985233464e-04, ...,
# 1.0144758970e-02, -5.5128755048e-04, 1.5089971712e-03],
# ...,
# [ 8.3417436108e-03, -1.2465091422e-03, -4.1219405830e-03, ...,
# -1.0164264590e-02, 9.2523321509e-03, 2.7965774760e-02],
# [-1.6406573355e-02, 4.4101417065e-02, -2.1357089281e-05, ...,
# 9.9819628522e-03, -4.5361258090e-03, -1.3653293252e-02],
# [-1.5188260004e-02, 4.0008693933e-02, 5.4121930152e-03, ...,
# -3.6789905280e-03, 2.1117802709e-02, 3.5965379328e-02]])
-
obsp
针对观测的配对的注释,前两维都是n_obs。比如点与点之间的距离和连通性。
adata.obsp
# PairwiseArrays with keys: connectivities, distances
adata.obsp['connectivities']
# <2638x2638 sparse matrix of type '<class 'numpy.float32'>'
# with 41952 stored elements in Compressed Sparse Row format>
adata.obsp['distances']
# <2638x2638 sparse matrix of type '<class 'numpy.float64'>'
# with 23742 stored elements in Compressed Sparse Row format>
-
layers
在做速率分析的时候,还可以看到adata中有layers这一部分的信息。
adata = scv.datasets.pancreas()
adata
AnnData object with n_obs × n_vars = 3696 × 27998
obs: 'clusters_coarse', 'clusters', 'S_score', 'G2M_score'
var: 'highly_variable_genes'
uns: 'clusters_coarse_colors', 'clusters_colors', 'day_colors', 'neighbors', 'pca'
obsm: 'X_pca', 'X_umap'
layers: 'spliced', 'unspliced'
obsp: 'distances', 'connectivities'
Dictionary-like object with values of the same dimensions as X
.
可以理解为平行空间的对象,比如Seurat里面的count,标准化之后叫data,归一化之后叫scale.data。
2. 提取信息
可以使用adata.然后输入Tab来查看可以使用的函数或变量。
# 数据数目统计
adata.n_obs # 返回细胞数 2695
adata.n_vars # 返回基因数 18270
adata.shape # (2695, 18270)
# 数据键值提取
adata.obs_keys() # 细胞注释信息的keys,比如 ['ClusterID', 'ClusterName', 'SCT_snn_res_0_8', 'nCount_SCT', 'nCount_Spatial', 'nFeature_SCT', 'nFeature_Spatial', 'orig_ident', 'seurat_clusters', 'imagecol', 'imagerow'']
adata.obs_names # 返回细胞ID 数据类型是object
adata.var.index # 返回基因 数据类型是object
adata.var_names.to_list() # 返回基因 数据类型是list
adata.obs.head() # 查看前5行的数据
# 其他的数据组成也可以使用
参考:
https://cellgeni.readthedocs.io/en/latest/visualisations.html