(十三)Matplotlib知识学习5-python数据分析与机器学习实战(学习笔记)

文章原创,最近更新:2018-05-9

1.原数据的展示
2.折线图的细节设置
课程来源: python数据分析与机器学习实战-唐宇迪

为了方便学习,将练习所涉及的练习percent-bachelors-degrees-women-usa.csv文件以百度网盘共享的方式分享出来.
链接: https://pan.baidu.com/s/1igpIRU3g7rBkJm2nnkY6tg 密码: 8tsw

1.原数据的展示

percent-bachelors-degrees-women-usa.csv文件本数据集汇总了从1970年到2011年之间美国大学各专业中女生数占总学生数的百分比例数值,男女生共100人,如下图所示:

2.折线图的细节设置

利用Pandas库读入CSV文件,并快速绘制生物学专业女生比例随着年份变化的曲线图.

曲线图完整的代码如下;

import pandas as pd
import matplotlib.pyplot as plt

women_degrees=pd.read_csv('percent-bachelors-degrees-women-usa.csv')
plt.plot(women_degrees["Year"],women_degrees["Biology"])

plt.show()

输出的结果如下:


如何在同一子图中,绘制两条不同颜色的线性图,并且图例在左上方,有标题等相关元素?

完整的代码如下:

import pandas as pd
import matplotlib.pyplot as plt

women_degrees=pd.read_csv('percent-bachelors-degrees-women-usa.csv')

plt.plot(women_degrees['Year'], women_degrees['Biology'], c='blue', label='Women')
plt.plot(women_degrees['Year'], 100-women_degrees['Biology'], c='green', label='Men')
plt.legend(loc='upper right')
plt.title('Percentage of Biology Degrees Awarded By Gender')
plt.show()

输出的结果如下:

如何设置忽略x轴和y轴的刻度?

这里涉及到的知识点是.tick_params()函数
matplotlib.pyplot.tick_params(axis ='both',** kwargs )
作用是更改刻度线,刻度线标签和网格线的外观。

  • axis : {'x','y','both'},可选将参数应用于哪个轴。
    运行的轴; 默认axis=both表示同时影响x、y轴的刻度.
  • bottom, top, left, right : 布尔型.
    是否绘制相应的刻度。
    参考资料:matplotlib官方资料

可以利用子图ax对象的tick_params属性,忽略x轴和y轴的刻度

完整的代码如下:

import pandas as pd
import matplotlib.pyplot as plt

women_degrees=pd.read_csv('percent-bachelors-degrees-women-usa.csv')

fig,ax=plt.subplots()
ax.plot(women_degrees['Year'], women_degrees['Biology'], c='blue', label='Women')
ax.plot(women_degrees['Year'], 100-women_degrees['Biology'], c='green', label='Men')
ax.tick_params(bottom="off", top="off", left="off", right="off")
ax.legend(loc='upper right')
ax.set_title('Percentage of Biology Degrees Awarded By Gender')
ax.legend(loc="upper right")

plt.show()

输出的结果是:


如何设置忽略绘图显示的边框?

这里涉及到的函数是如下:
for key,spine in ax.spines.items():
spine.set_visible(False)
作用是隐藏坐标系的外围框线
注意:关于.spines.items()网上可以查的内容很少,这里也不是很理解.

利用子图中spine对象中的items属性,可以忽略绘图显示的边框,具体代码如下:

import pandas as pd
import matplotlib.pyplot as plt

women_degrees=pd.read_csv('percent-bachelors-degrees-women-usa.csv')

fig,ax=plt.subplots()
ax.plot(women_degrees['Year'], women_degrees['Biology'], c='blue', label='Women')
ax.plot(women_degrees['Year'], 100-women_degrees['Biology'], c='green', label='Men')
ax.tick_params(bottom="off", top="off", left="off", right="off")
ax.legend(loc='upper right')
ax.set_title('Percentage of Biology Degrees Awarded By Gender')

for key,spine in ax.spines.items():
    spine.set_visible(False)
ax.legend(loc="upper right")

plt.show()

输出的结果如下:


如何在同一画布中绘制4个子图,并且分别显示'Biology', 'Computer Science', 'Engineering', 'Math and Statistics'这四个专业的男女生比例随年份变化的趋势?

代码如下:

import pandas as pd
import matplotlib.pyplot as plt

women_degrees=pd.read_csv('percent-bachelors-degrees-women-usa.csv')
major_cats=['Biology', 'Computer Science', 'Engineering', 'Math and Statistics']
fig=plt.figure(figsize=(12,12))

for sp in range(0,4):
    ax=fig.add_subplot(2,2,sp+1)
    ax.plot(women_degrees['Year'], women_degrees[major_cats[sp]], c='blue', label='Women')
    ax.plot(women_degrees['Year'], 100-women_degrees[major_cats[sp]], c='green', label='Men')
plt.legend(loc="upper right")
plt.show()

输出的结果如下:


从以上输出的结果来看,不是很满意,想对绘图曲线取消边框/刻度,设置标题,并且重新设置xy轴的刻度标签,那又应该怎么操作呢?

代码如下:

import pandas as pd
import matplotlib.pyplot as plt

women_degrees=pd.read_csv('percent-bachelors-degrees-women-usa.csv')
major_cats=['Biology', 'Computer Science', 'Engineering', 'Math and Statistics']
fig=plt.figure(figsize=(12,12))

for sp in range(0,4):
    ax=fig.add_subplot(2,2,sp+1)
    ax.plot(women_degrees['Year'], women_degrees[major_cats[sp]], c='blue', label='Women')
    ax.plot(women_degrees['Year'], 100-women_degrees[major_cats[sp]], c='green', label='Men')
    for key,spine in ax.spines.items():
        spine.set_visible(False)
    ax.set_xlim(1968,2011)
    ax.set_ylim(0,100)
    ax.set_title(major_cats[sp])
    ax.tick_params(bottom="off", top="off", left="off", right="off")

plt.legend(loc="upper right")
plt.show()

输出的结果如下:


怎么用RGB更改折线的颜色

以下是比较通用的RGB颜色


其他的颜色的RGB颜色,可以在其他相关的网站寻找.

代码如下:


import pandas as pd
import matplotlib.pyplot as plt

women_degrees = pd.read_csv('percent-bachelors-degrees-women-usa.csv')
major_cats = ['Biology', 'Computer Science', 'Engineering', 'Math and Statistics']


cb_dark_blue = (0/255, 107/255, 164/255)
cb_orange = (255/255, 128/255, 14/255)

fig = plt.figure(figsize=(12, 12))

for sp in range(0,4):
    ax = fig.add_subplot(2,2,sp+1)
    # The color for each line is assigned here.
    ax.plot(women_degrees['Year'], women_degrees[major_cats[sp]], c=cb_dark_blue, label='Women')
    ax.plot(women_degrees['Year'], 100-women_degrees[major_cats[sp]], c=cb_orange, label='Men')
    for key,spine in ax.spines.items():
        spine.set_visible(False)
    ax.set_xlim(1968, 2011)
    ax.set_ylim(0,100)
    ax.set_title(major_cats[sp])
    ax.tick_params(bottom="off", top="off", left="off", right="off")

plt.legend(loc='upper right')
plt.show()

输出的结果如下:


从以上结果可以看到每个子图折线的宽度太窄,看起来有点不爽,有没有办法可以让子图看起来更清晰一些呢?

在ax.plot参数增加折线宽度的设置,设置linewidth=10
修改前:

ax.plot(women_degrees['Year'], women_degrees[major_cats[sp]], c=cb_dark_blue, label='Women')
ax.plot(women_degrees['Year'], 100-women_degrees[major_cats[sp]], c=cb_orange, label='Men')

修改后:

ax.plot(women_degrees['Year'], women_degrees[major_cats[sp]], c=cb_dark_blue, label='Women',linewidth=10)
ax.plot(women_degrees['Year'], 100-women_degrees[major_cats[sp]], c=cb_orange, label='Men',linewidth=10)

修改后完整的代码如下:

import pandas as pd
import matplotlib.pyplot as plt

women_degrees = pd.read_csv('percent-bachelors-degrees-women-usa.csv')
major_cats = ['Biology', 'Computer Science', 'Engineering', 'Math and Statistics']


cb_dark_blue = (0/255, 107/255, 164/255)
cb_orange = (255/255, 128/255, 14/255)

fig = plt.figure(figsize=(12, 12))

for sp in range(0,4):
    ax = fig.add_subplot(2,2,sp+1)
    ax.plot(women_degrees['Year'], women_degrees[major_cats[sp]], c=cb_dark_blue, label='Women', linewidth=10)
    ax.plot(women_degrees['Year'], 100-women_degrees[major_cats[sp]], c=cb_orange, label='Men', linewidth=10)
    for key,spine in ax.spines.items():
        spine.set_visible(False)
    ax.set_xlim(1968, 2011)
    ax.set_ylim(0,100)
    ax.set_title(major_cats[sp])
    ax.tick_params(bottom="off", top="off", left="off", right="off")

plt.legend(loc='upper right')
plt.show()

输出的结果如下:


从以上结果看,效果还不是很完善,能否增加2个专业,并且将绘制的子图并排排列?

对画布的大小进行重新设置

修改前:

major_cats = ['Biology', 'Computer Science', 'Engineering', 'Math and Statistics']
fig = plt.figure(figsize=(12, 12))
ax = fig.add_subplot(2,2,sp+1)
for sp in range(0,4):
ax.plot(women_degrees['Year'], women_degrees[major_cats[sp]], c=cb_dark_blue, label='Women', linewidth=10)
ax.plot(women_degrees['Year'], 100-women_degrees[major_cats[sp]], c=cb_orange, label='Men', linewidth=10)
ax = fig.add_subplot(2,2,sp+1)
ax.set_title(major_cats[sp])

修改后:

stem_cats = ['Engineering', 'Computer Science', 'Psychology', 'Biology', 'Physical Sciences', 'Math and Statistics']
fig = plt.figure(figsize=(18, 3))
for sp in range(0,6)
ax = fig.add_subplot(1,6,sp+1)
ax.plot(women_degrees['Year'], women_degrees[stem_cats[sp]], c=cb_dark_blue, label='Women', linewidth=10)
ax.plot(women_degrees['Year'], 100-women_degrees[stem_cats[sp]], c=cb_orange, label='Men', linewidth=10)
ax = fig.add_subplot(1,6,sp+1)
ax.set_title(stem_cats[sp])

修改后的代码如下:

import pandas as pd
import matplotlib.pyplot as plt

women_degrees = pd.read_csv('percent-bachelors-degrees-women-usa.csv')
stem_cats = ['Engineering', 'Computer Science', 'Psychology', 'Biology', 'Physical Sciences', 'Math and Statistics']


cb_dark_blue = (0/255, 107/255, 164/255)
cb_orange = (255/255, 128/255, 14/255)

fig = plt.figure(figsize=(18, 3))

for sp in range(0,6):
    ax = fig.add_subplot(1,6,sp+1)
    ax.plot(women_degrees['Year'], women_degrees[stem_cats[sp]], c=cb_dark_blue, label='Women', linewidth=10)
    ax.plot(women_degrees['Year'], 100-women_degrees[stem_cats[sp]], c=cb_orange, label='Men', linewidth=10)
    for key,spine in ax.spines.items():
        spine.set_visible(False)
    ax.set_xlim(1968, 2011)
    ax.set_ylim(0,100)
    ax.set_title(stem_cats[sp])
    ax.tick_params(bottom="off", top="off", left="off", right="off")

plt.legend(loc='upper right')
plt.show()

输出的结果如下:

怎么在第1张以及第6张子图的两条折线上添加文字?

.text()函数相关的知识:
例如ax.text(1, 2, "I'm a text")
前两个参数表示文本坐标, 第三个参数为要添加的文本

通过ax.text()进行设置,就可以在两条折线上添加文字.
完整的代码如下:

import pandas as pd
import matplotlib.pyplot as plt

women_degrees = pd.read_csv('percent-bachelors-degrees-women-usa.csv')
stem_cats = ['Engineering', 'Computer Science', 'Psychology', 'Biology', 'Physical Sciences', 'Math and Statistics']


cb_dark_blue = (0/255, 107/255, 164/255)
cb_orange = (255/255, 128/255, 14/255)

fig = plt.figure(figsize=(18, 3))

for sp in range(0,6):
    ax = fig.add_subplot(1,6,sp+1)
    ax.plot(women_degrees['Year'], women_degrees[stem_cats[sp]], c=cb_dark_blue, label='Women', linewidth=10)
    ax.plot(women_degrees['Year'], 100-women_degrees[stem_cats[sp]], c=cb_orange, label='Men', linewidth=10)
    for key,spine in ax.spines.items():
        spine.set_visible(False)
    ax.set_xlim(1968, 2011)
    ax.set_ylim(0,100)
    ax.set_title(stem_cats[sp])
    ax.tick_params(bottom="off", top="off", left="off", right="off")
    if sp ==0:
        ax.text(2005,87,'Men')
        ax.text(2002, 8, 'Women')
    elif sp==5:
        ax.text(2005, 62, 'Men')
        ax.text(2001, 35, 'Women')

plt.show()

输出的结果如下:


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,591评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,448评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,823评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,204评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,228评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,190评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,078评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,923评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,334评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,550评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,727评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,428评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,022评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,672评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,826评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,734评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,619评论 2 354