TopK问题-基于堆排序和快速排序的实现

  Top K 问题相信大家在面试过程中,经常被问到,下面就为大家来讲讲两种常见的实现算法。

一. 基于堆排序实现

    1. 思路
        基于数组前K个数生成一个小顶堆,数组剩余元素依次与堆顶数据比较,小于等于堆顶数据时直接舍弃,大于堆顶数据时替换掉堆顶数据,并调整堆结构保证满足小顶堆要求。
    1. 算法优势
        时间复杂度是O(N*logK),不需要将数组一次全部加载到内存中,可以处理海量数据。
    1. 图解


      Top K 小顶堆实现
    1. 代码实现(Golang)
// 小顶堆法,找top k
func TopKByMinHeap(nums []int, k int) []int {
    length := len(nums)
    // 数组长度小于k,直接返回
    if length < k {     
        return nums
    }
        
    // 数组前k个数据取出,并生成小顶堆
    minHeap := make([]int, 0)
    minHeap = append(minHeap, nums[:k]...)
    CreateMinHeap(minHeap)

    // 遍历数组剩余数据,大于堆顶数据时,替换堆顶,重新维护小顶堆
    for i := k; i < length; i++ {
        if nums[i] > minHeap[0] {
            minHeap[0] = nums[i]
            MinHeapify(minHeap, 0, k)
        }
    }

    return minHeap
}

// 自底向上创建小顶堆
func CreateMinHeap(nums []int) {
    length := len(nums)
    for i := length - 1; i >= 0; i-- {
        MinHeapify(nums, i, length)
    }
}

// 维护小顶堆
func MinHeapify(nums []int, posIndex, length int) {
    // 堆左孩子节点index
    leftIndex := 2*posIndex + 1
    // 堆右孩子节点index
    rightIndex := 2*posIndex + 2
    // 当前节点以及左右孩子节点中最小值的index, 初始化为当前节点index
    minIndex := posIndex
    // 左孩子存在并且小于当前节点值时, 最小值index替换为左孩子index
    if leftIndex < length && nums[leftIndex] < nums[minIndex] {
        minIndex = leftIndex
    }
    // 右孩子存在并且小于当前节点值时, 最小值index替换为右孩子index
    if rightIndex < length && nums[rightIndex] < nums[minIndex] {
        minIndex = rightIndex
    }
    // 最小值节点index不等于当前节点时,替换当前节点和其中较小孩子节点值
    if minIndex != posIndex {
        nums[posIndex], nums[minIndex] = nums[minIndex], nums[posIndex]
        MinHeapify(nums, minIndex, length)
    }
}


二. 基于快排实现

    1. 思路
        利用快排的分划函数找到分界点位置K,则前K个数据即所求结果。
    1. 算法优势
        时间复杂度是O(N),对于可以一次性加载到内存的数组效率很高。
    1. 图解


      Top K 快排实现
    1. 代码实现(Golang)

// 快排法,找Top k
func TopKByQuickSort(nums []int, k int) []int {
    length := len(nums)
    // 数组长度小于k,直接返回
    if length < k {
        return nums
    }

    // 数组进行快排,左侧边界
    left := 0
    // 数组进行快排,右侧边界
    right := length
    // 第一次快排后,获取分界点index
    pivotIndex := partition(nums, left, right)
    
    // 循环快排,找到分界点index刚好等于k
    for pivotIndex != k {
        if pivotIndex < k {
            // 分界点index小于k,继续对分界点右侧进行快排,重新获取分界点index
            left = pivotIndex + 1
        } else {
            // 分界点index大于k,缩小快排范围为上次分界点与本次分界点之间数据,重新获取分界点index
            right = pivotIndex
        }
        pivotIndex = partition(nums, left, right)
    }
    return nums[:k]
}

// 按分界点,进行快排,并返回分界点index
func partition(nums []int, left, right int) int {
    // 初始化分界值为左边界值
    pivot := nums[left]
    // 所有大于分界值的数据边界index
    pos := left
    
    // 小于分界值时,边界扩展,将数据替换到边界值index位置,
    for i := left; i < right; i++ {
        if nums[i] > pivot {
            pos++
            nums[i], nums[pos] = nums[pos], nums[i]
        }
    }
    
    // 交换分界值的数据边界index和分界点index,使得分界点左侧均大于分界点,右侧均小于分界点
    nums[pos], nums[left] = nums[left], nums[pos]

    return pos
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,427评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,551评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,747评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,939评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,955评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,737评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,448评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,352评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,834评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,992评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,133评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,815评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,477评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,022评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,147评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,398评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,077评论 2 355