R语言入门学习笔记(4)

课程源代码:https://github.com/miwu8512/IntroToR

视频地址: https://www.youtube.com/watch?v=rPj5FsTRboE&list=PLBTcf4SwWEI9_kCOJ-1o-Jwr-_Qb6bkeg

Lecture 4 R作图实践

Bar chart 条图

#4.1 Bar chart
library(vcd)
counts = table(Arthritis$Improved)
counts
par(mfrow=c(2,2))
barplot(counts,
        main = "Simple Bar Plot",
        xlab = "Improvement", ylab = "Frequency")
#横向条图
barplot(counts,
        main = "Horizontal Bar Plot",
        xlab = "Frequency", ylab = "Improvement",
        horiz = TRUE)

counts <- table(Arthritis$Improved,Arthritis$Treatment)
counts
#堆积条形图
barplot(counts,
        main = "Stacked Bar Plot",
        xlab = "Treatment", ylab = "Frequency",
        col = c("red","yellow","green"),
        legend = rownames(counts))
#复式条形图
barplot(counts,
        main = "Group Bar Plot",
        xlab = "Treatment", ylab = "Frequency",
        col = c("red","yellow","green"),
        legend = rownames(counts),beside = TRUE)

4.2 Pie chart 饼图

#Pie chart
install.packages("plotrix")
library(plotrix)  #用于三维饼图
par(mfrow=c(2,2))
slices <- c(10,12,4,16,8)
lbls <- c("US","UK","Australia","Germany","France")
pie(slices, labels = lbls, 
    main = "Simple Pie Chart",
    edges = 300,radius = 1)   #面积 半径
pct <- round(slices/sum(slices)*100)
lbls2 <- paste(lbls, " ", pct, "%",sep = "")  #paste 连接字符
lbls2
pie(slices, labels = lbls2,
    col = rainbow(length(lbls2)),
    main = "Pie Chart with Percentages",
    edges = 300,radius = 1)
pie3D(slices,labels = lbls,
      explode = 0.1, 
      main = "3D Pie Chart",
      edges =300,radius=1)

mytable <- table(state.region)
lbls3 <- paste(names(mytable), "\n", mytable, sep = "")
lbls3
pie(mytable,labels =lbls3,
    main = "Pie Chart from a Table\n(with sample size)",
    edges=300,radius=1)

4.3 Fan Plot 扇形图

#Fan Plot 
slices <- c(10,12,4,16,8)
lbls <- c("US","UK","Australia","Germany","France")
fan.plot(slices, labels = lbls, main = "Fan Plot")

4.4 Dot Chart 点图

#Dot Chart  
dotchart(mtcars$mpg,
     labels = row.names(mtcars),cex=0.7,
     main = "Gas Mileage for Car Models",
     xlab = "Miles Per Gallon")

4.5 summary

head(mtcars)
summary(mtcars)  #对数据特征做简单统计

4.6 Tables

attach(mtcars)
table(cyl)
summary(mpg)
table(cut(mpg,seq(10,34,by=2)))

4.7 Correlations 相关

states <- state.x77[,1:6]
cov(states)  #协方差
var(states)  #方差
cor(states)  #相关

4.8 T test

x <- rnorm(100,mean = 10,sd = 1)
y <- rnorm(100,mean = 30,sd = 1)
t.test(x,y,alt = "two.sided")

4.9 Wilcoxon test

wilcox.test(x,y,alt = "less")

4.10 正态性检验

library(normtest)
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 2017年夏天开始学习R语言。 第1章 R语言介绍 1.1 R的获取和安装 下载Rgui:http://cran....
    弹跳骑士阅读 8,049评论 0 10
  • 所以小音为大家带来一份学习资料 滴~请查收 本文总结了50个图表绘制方法,对于数据分析的可视化有莫大的作用。 在数...
    音智达阅读 1,334评论 0 0
  • 20171225(从有道迁移) 基本图形 条形图简单条形图:通过垂直的或水平的条形展示了类别型变量的分布(频数)语...
    KrisKC阅读 551评论 0 0
  • Helm 是 Kubernetes 的软件包管理工具。本文需要读者对 Docker、Kubernetes 等相关知...
    guoweikuang阅读 86,964评论 3 86
  • 概述 摘要:用UIKit制作一款游戏,学习整型变量、按钮、颜色和动作。 概念:@2x和@3x图像,资源目录,整型变...
    lbhw阅读 606评论 0 0