Description
Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9]
, insert and merge [2,5]
in as [1,5],[6,9]
.
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16]
, insert and merge [4,9]
in as [1,2],[3,10],[12,16]
.
This is because the new interval [4,9]
overlaps with [3,5],[6,7],[8,10]
.
Solution
Iteration, time O(n), space O(n)
本来想用二分查找做,感觉有点麻烦,后来发现还不如一个一个扫过去简单。创建一个List<Interval> res来存储merge后的intervals比较简单,不用再原链表上做修改。
/**
* Definition for an interval.
* public class Interval {
* int start;
* int end;
* Interval() { start = 0; end = 0; }
* Interval(int s, int e) { start = s; end = e; }
* }
*/
class Solution {
public List<Interval> insert(List<Interval> intervals, Interval newInterval) {
List<Interval> res = new ArrayList<>();
for (Interval interval : intervals) {
if (isOverlap(newInterval, interval)) {
newInterval = merge(newInterval, interval);
} else {
if (interval.end < newInterval.start) {
res.add(interval);
} else {
res.add(newInterval);
newInterval = interval;
}
}
}
res.add(newInterval);
return res;
}
public boolean isOverlap(Interval a, Interval b) {
if (a.start > b.start) {
return isOverlap(b, a);
}
return a.end >= b.start;
}
public Interval merge(Interval a, Interval b) {
return new Interval(Math.min(a.start, b.start), Math.max(a.end, b.end));
}
}