拓展欧几里得算法

问题

  • 求线性同余方程ax+by=c的整数解

思路

首先介绍下欧几里得算法的原理,众所周知,欧几里得算法是辗转相除法,这里给出证明:

假设a>b,证明 gcd(a,b) = gcd(a mod b,b)
设a=bk+c,c=a mod b
如果D=gcd(b,c)>gcd(a,b),则等式 a=bk+c 右边除以D是整数,但左边除以D不是整数
如果gcd(b,c)<gcd(a,b)=D,则等式 c=a-bk 右边除以D是整数,但左边除以D不是整数
可见均矛盾,故gcd(b,c)=gcd(a,b)

拓展欧几里得算法也是基于这个递推式,根据裴蜀定理,线性同余方程ax+by=c有整数解的充要条件是c|gcd(a,b),那么我们设a>=b,有

  • ax1+bx2=1
  • 根据 gcd(a,b)=gcd(b,a mod b)=1,我们有
  • bx2 + (a mod b)y2=1
  • 若t = a/b,有
  • bx2 + (a mod b + bt -bt)y2 = 1
    化简得 ay2 + b(x2-ty2) = 1
    因为a mod b<b,故问题的规模可以逐步化简直至b=1,此时取一个解:xn=0, yn=1(这里也可以看出,方程有无穷多解),逐步递归即可得到答案

解决

    public int[] extended(int a, int b, int c){//ax+by=c
        if (a<b){a^=b;b^=a;a^=b;}
        return extended(a/c,b/c);
    }

    public int[] extended(int a, int b){
        if(b==1) return new int[]{0,1};//写成b==0 return 1,0一个道理,但为什么要多一步呢?
        int[] next = extended(b,a%b);
        return new int[]{next[1],next[0]-a/b*next[1]};
    }

Tips

  • 注意裴蜀定理中c|gcd(a,b)是充要条件,也就是说如果不符合则无解,这里为了方便不考虑这种情况,另外也不考虑a=b=c=0这种特殊情况
  • gcd(a,b) * lcm(a,b) = a*b的证明:https://oi-wiki.org/math/gcd/#_5
  • ax+by=1和ax≡1(mod b)完全等价,故可以用拓展欧几里得算法来求逆元,当然求逆元也有其他方式,比如线性时间复杂度中求a以内所有数的逆元,这里不展开了
  • 如果不想让x或者y出现负数,可以使 x = (x+b)%b 或者 y=(y+a)%a
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容

  • 首先重点讲解中国剩余定理,举例:一个数x除d1余r1,除d2余r2,除d3余r3,那么,求这个数的最小值 。解答:...
    碧影江白阅读 2,159评论 0 2
  • 欧几里德定理: gcd(a, b) = gcd(b , a%b)欧几里德算法停止的状态是: a= gcd , b ...
    小幸运Q阅读 383评论 0 0
  • 基本运算 取模(mod)取余(rem) 定义 给定一个正整数p,任意一个整数n,一定存在等式 : n = kp +...
    passwd_阅读 1,477评论 0 3
  • 欧几里得算法:递归版本: 迭代版本: 扩展欧几里德算法:基本算法:对于不完全为 0 的非负整数 a,b,gcd(a...
    Gitfan阅读 632评论 0 0
  • 欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理: gcd...
    鱼山樵子阅读 503评论 0 1