java并发(4)深入理解volatile

知识基础

需要先了解 Java内存模型 相关知识.

定义

Java语言规范第三版中对volatile的定义如下:

java编程语言允许线程访问共享变量,为了确保共享变量能被准确和一致的更新,线程应该确保通过排他锁单独获得这个变量。Java语言提供了volatile,在某些情况下比锁更加方便。如果一个字段被声明成volatile,java线程内存模型确保所有线程看到这个变量的值是一致的。

一句话即, volatile 声明的变量可以保证多线程对这个变量的可见性.

它被称为轻量级的 synchronized, 它比synchronized的使用和执行成本会更低,因为它不会引起线程的阻塞从而导致线程上下文的切换和调度。

volatile的内存语义

回顾下happens-beforevolatile规则的定义 : volatile变量的写,先发生于后续对这个变量的读.

这句话的含义有两层.

  1. volatile 的写操作, 需要将线程本地内存值,立马刷新到 主内存的共享变量中.
  2. volatile 的读操作, 需要从主内存的共享变量中读取,更新本地内存变量的值.

由此引出 volatile 的内存语义.

  • 当写一个volatile变量时,JMM会把该线程对应的本地内存中的共享变量值刷新到主内存.
  • 当读一个volatile变量时,JMM会把该线程对应的本地内存置为无效。线程接下来将从主内存中读取共享变量,并更新本地内存的值.

volatile 的特性

  • 可见性 : 对一个volatile的变量的读,总是能看到任意线程对这个变量最后的写入.
  • 单个读或者写具有原子性 : 对于单个volatile变量的读或者写具有原子性,复合操作不具有.(如i++)
  • 互斥性 : 同一时刻只允许一个线程对变量进行操作.(互斥锁的特点)

所以说, 对于单步操作的 volatile 具有锁的特点.

class VolatileFeaturesTest1 {
    private volatile long vl = 0L;          // 使用volatile声明64位的long型变量

    public void set(long l) {
        vl = l;                             // 单个volatile变量的写
    }

    public void getAndIncrement() {
        vl++;                               // 复合(多个)volatile变量的读/写
    }

    public long get() {
        return vl;                          // 单个volatile变量的读
    }
}

class VolatileFeaturesTest2 {
    long vl = 0L;                           // 64位的long型普通变量

    public synchronized void set(long l) {  // 对单个的普通变量的写用同一个锁同步
        vl = l;
    }

    public void getAndIncrement() {         // 普通方法调用
        long temp = get();                  // 调用已同步的读方法
        temp += 1L;                         // 普通写操作
        set(temp);                          // 调用已同步的写方法
    }

    public synchronized long get() {        // 对单个的普通变量的读用同一个锁同步
        return vl;
    }
}
// 上诉两个类效果是等价的.

volatile 内存语义的实现

JMM为volatile定制的重排序规则:

volatile重排序规则.png

从表中归纳.

  • 当第一个操作是 volatile读时,不管第二个操作是什么,都不能重排序.确保volatile读之后的操作不会被重排序到 volatile读之前.

  • 当第二个操作是 volatile写时,不管第一个操作是什么,都不能重排序.确保volatile写之前的操作不会被重排序到volatile写之后.

  • 当第一个操作是 volatile写,第二个操作是 volatile读时,不能重排序.

为了实现volatile的内存语义,编译器在生成字节码时,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序。

  • 在每个volatile写操作的前面插入一个StoreStore屏障。
  • 在每个volatile写操作的后面插入一个StoreLoad屏障。
  • 在每个volatile读操作的后面插入一个LoadLoad屏障。
  • 在每个volatile读操作的后面插入一个LoadStore屏障。

volatile写内存屏障

volatile写内存屏障.png

StoreStore屏障 可以保证在volatile写之前,其前面的所有普通写操作已经对任
意处理器可见了。

StoreLoad屏障 将 volatile写操作刷新到内存.

由此达到, volatile写 立马刷新到主内存的效果.

volatile读内存屏障

volatile读内存屏障.png

LoadLoad屏障 保障后续是读操作时, volatile读装载到内存数据.
LoadStore屏障 保障后续是写操作时, volatile读装载到内存数据.

由此达到, volatile读 从主内存中读取共享变量,并更新本地内存的值.

volatile的使用条件

  1. 对变量的写操作不依赖于当前值 或 能够确保只有单一线程能够修改变量的值

i++操作,变量的写操作依赖当前值,所以不能保证线程安全.

  1. 该变量没有包含在具有其他变量的不变式中

i<value,即使i变量声明为volatile,也不能保证线程安全,value可能在运行判断的时候发生变化.

正确使用volatile

下面提出几种使用 volatile的场景.

  1. 状态标志

作为一个布尔状态标志,用于指示发生了一个重要的一次性事件,例如完成初始化或任务结束.

状态标志并不依赖于程序内任何其他状态,且通常只有一种状态转换

volatile boolean shutdownRequested;
 
...
 
public void shutdown() { shutdownRequested = true; }
 
public void doWork() { 
    while (!shutdownRequested) { 
        // todo...
    }
}
  1. 一次性安全发布(one-time safe publication)

在缺乏同步的情况下,可能会遇到某个对象引用的更新值(由另一个线程写入)和该对象状态的旧值同时存在。(这就是造成著名的双重检查锁定(double-checked-locking)问题的根源)。

//基于volatile的解决方案
public class SafeDoubleCheckSingleton {
    //通过volatile声明,实现线程安全的延迟初始化
    private volatile static SafeDoubleCheckSingleton singleton;
    private SafeDoubleCheckSingleton(){
    }
    public static SafeDoubleCheckSingleton getInstance(){
        if (singleton == null){
            synchronized (SafeDoubleCheckSingleton.class){
                if (singleton == null){
                    //原理利用volatile在于 禁止 "初始化对象"(2) 和 "设置singleton指向内存空间"(3) 的重排序
                    singleton = new SafeDoubleCheckSingleton();
                }
            }
        }
        return singleton;
    }
}

由于对象的创建,可以拆分成以下指令:

对象创建顺序

在多线程环境中,如果没有对变量 声明为volatile,将可能出现以下情况,其他线程可能得到的是null而不是完成初始化的对象.

对象创建乱序
  1. 独立观察(independent observation)

将 volatile变量用于多个独立观察结果的发布,是"状态标志"的拓展,该值随时会发生变化,同时会被反复使用,前者一般就是用一次 ;只是简单的赋值操作,不会做复合操作.

class CustomLinkedList{
    public volatile Node lastNode;
    .....
    public void add() {
        Node node = new Node();
        .....
        lastNode = node;//将新节点作为最后一个节点
    }
}
  1. 开销较低的读-写锁策略

当读远多于写,结合使用内部锁和 volatile 变量来减少同步的开销
利用volatile保证读取操作的可见性;利用synchronized保证复合操作的原子性

public class Counter {
    private volatile int value;
    //利用volatile保证读取操作的可见性, 读取时无需加锁
    public int getValue() { return value; }
    // 使用 synchronized 加锁
    public synchronized int increment() { 
        return value++;
    }
}

引用

  1. java并发编程的艺术
  2. 并发番@Java内存模型&Volatile一文通(1.7版)
  3. 正确使用 Volatile 变量
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,591评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,448评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,823评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,204评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,228评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,190评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,078评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,923评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,334评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,550评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,727评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,428评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,022评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,672评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,826评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,734评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,619评论 2 354

推荐阅读更多精彩内容