查看kafka消息消费情况

查看主题命令

展示topic列表

./kafka-topics.sh --list --zookeeper 172.18.153.12:2188

描述topic

./kafka-topics.sh --describe --zookeeper 172.18.153.12:2188 --topic test

查看topic某分区偏移量最大(小)值

./kafka-run-class.sh kafka.tools.GetOffsetShell --topic test --time -1 --broker-list 10.1.3.84:9098 --partitions 0

增加topic分区数

./kafka-topics.sh --zookeeper 172.18.153.12:2188 --alter --topic test --partitions 10

删除topic:慎用,只会删除zookeeper中的元数据,消息文件须手动删除

方法一:
./kafka-topics.sh --delete --zookeeper 172.18.153.12:2188 --topic test
方法二:待验证
./kafka-run-class.sh kafka.admin.DeleteTopicCommand --zookeeper 172.18.153.12:2188 --topic test

查看topic消费进度,必须参数为--group, 不指定--topic,默认为所有topic,

./kafka-run-class.sh kafka.tools.ConsumerOffsetChecker --group group1

列出所有主题中的所有用户组:

./kafka-consumer-groups.sh --bootstrap-server 10.1.3.84:9098 --list

要使用ConsumerOffsetChecker查看上一个示例中消费者组的偏移量,我们按如下所示“describe”消费者组:

./kafka-consumer-groups.sh --bootstrap-server 10.1.3.84:9098 --describe --group group1

-members: 此选项提供使用者组中所有活动成员的列表。

./kafka-consumer-groups.sh --bootstrap-server 10.1.3.84:9098 --describe --group group1 --members

查看kafka消息消费情况

消息堆积是消费滞后(Lag)的一种表现形式,消息中间件服务端中所留存的消息与消费掉的消息之间的差值即为消息堆积量,也称之为消费滞后(Lag)量。
对于Kafka而言,消息被发送至Topic中,而Topic又分成了多个分区(Partition),每一个Partition都有一个预写式的日志文件,虽然Partition可以继续细分为若干个段文件(Segment),但是对于上层应用来说可以将Partition看成最小的存储单元(一个由多个Segment文件拼接的“巨型文件”)。
每个Partition都由一系列有序的、不可变的消息组成,这些消息被连续的追加到Partition中。我们来看下图,其就是Partition的一个真实写照:


file

上图中有四个概念:

LogStartOffset:表示一个Partition的起始位移,初始为0,虽然消息的增加以及日志清除策略的影响,这个值会阶段性的增大。
ConsumerOffset:消费位移,表示Partition的某个消费者消费到的位移位置。
HighWatermark:简称HW,代表消费端所能“观察”到的Partition的最高日志位移,HW大于等于ConsumerOffset的值。
LogEndOffset:简称LEO, 代表Partition的最高日志位移,其值对消费者不可见。

比如在ISR(In-Sync-Replicas)副本数等于3的情况下(如下图所示),消息发送到Leader A之后会更新LEO的值,Follower B和Follower C也会实时拉取Leader A中的消息来更新自己,HW就表示A、B、C三者同时达到的日志位移,也就是A、B、C三者中LEO最小的那个值。由于B、C拉取A消息之间延时问题,所以HW必然不会一直与Leader的LEO相等,即LEO>=HW。


file

要计算Kafka中某个消费者的滞后量很简单,首先看看其消费了几个Topic,然后针对每个Topic来计算其中每个Partition的Lag,每个Partition的Lag计算就显得非常的简单了,参考下图:


file

由图可知消费Lag=HW - ConsumerOffset。Kafka中自带的kafka-consumer_groups.sh脚本中就有Lag的信息,示例如下:

[root@node2 kafka_2.12-1.0.0]# bin/kafka-consumer-groups.sh --describe --bootstrap-server localhost:9092 --group CONSUMER_GROUP_ID

TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG CONSUMER-ID HOST CLIENT-ID
topic-test1 0 1648 1648 0 CLIENT_ID-e2d41f8d-dbd2-4f0e-9239-efacb55c6261 /192.168.92.1 CLIENT_ID
topic-test1 1 1648 1648 0 CLIENT_ID-e2d41f8d-dbd2-4f0e-9239-efacb55c6261 /192.168.92.1 CLIENT_ID
topic-test1 2 1648 1648 0 CLIENT_ID-e2d41f8d-dbd2-4f0e-9239-efacb55c6261 /192.168.92.1 CLIENT_ID
topic-test1 3 1648 1648 0 CLIENT_ID-e2d41f8d-dbd2-4f0e-9239-efacb55c6261 /192.168.92.1 CLIENT_ID

参考:
Kafka的Lag计算误区及正确实现:https://blog.csdn.net/u013256816/article/details/79955578
如何使用JMX监控Kafka:https://blog.csdn.net/u013256816/article/details/53524884

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,657评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,889评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,057评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,509评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,562评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,443评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,251评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,129评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,561评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,779评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,902评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,621评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,220评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,838评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,971评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,025评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,843评论 2 354

推荐阅读更多精彩内容