需求
■如何判断一堆不重复的字符串是否以某个前缀开头?
用Set\Map存储字符串
遍历所有字符串进行判断
时间复杂度:O(n)
■有没有更优的数据结构实现前缀搜索?
Trie
◼Trie 也叫做字典树、前缀树(Prefix Tree)、单词查找树
◼Trie 搜索字符串的效率主要跟字符串的长度有关
◼假设使用 Trie 存储 cat、dog、doggy、does、cast、add 六个单词
接口设计
接口一:
int size();
boolean isEmpty();
void clear();
boolean contains(String str);
void add(String str);
void remove(String str);
boolean starsWith(String prefix);
接口二:
int size();
boolean isEmpty();
void clear();
boolean contains(String str);
V add(String str, V value);
V remove(String str);
boolean starsWith(String prefix);
实现
Trie类
package alangeit;
import java.util.HashMap;
public class Trie<V> {
private int size;
private Node<V> root;
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
public void clear() {
size = 0;
root = null;
}
public V get(String key) {
Node<V> node = node(key);
return node != null && node.word ? node.value : null;
}
public boolean contains(String key) {
Node<V> node = node(key);
return node != null && node.word;
}
public V add(String key, V value) {
keyCheck(key);
// 创建根节点
if (root == null) {
root = new Node<>(null);
}
Node<V> node = root;
int len = key.length();
for (int i = 0; i < len; i++) {
char c = key.charAt(i);
boolean emptyChildren = node.children == null;
Node<V> childNode = emptyChildren ? null : node.children.get(c);
if (childNode == null) {
childNode = new Node<>(node);
childNode.character = c;
node.children = emptyChildren ? new HashMap<>() : node.children;
node.children.put(c, childNode);
}
node = childNode;
}
if (node.word) { // 已经存在这个单词
V oldValue = node.value;
node.value = value;
return oldValue;
}
// 新增一个单词
node.word = true;
node.value = value;
size++;
return null;
}
public V remove(String key) {
// 找到最后一个节点
Node<V> node = node(key);
// 如果不是单词结尾,不用作任何处理
if (node == null || !node.word) return null;
size--;
V oldValue = node.value;
// 如果还有子节点
if (node.children != null && !node.children.isEmpty()) {
node.word = false;
node.value = null;
return oldValue;
}
// 如果没有子节点
Node<V> parent = null;
while ((parent = node.parent) != null) {
parent.children.remove(node.character);
if (parent.word || !parent.children.isEmpty()) break;
node = parent;
}
return oldValue;
}
public boolean startsWith(String prefix) {
return node(prefix) != null;
}
private Node<V> node(String key) {
keyCheck(key);
Node<V> node = root;
int len = key.length();
for (int i = 0; i < len; i++) {
if (node == null || node.children == null || node.children.isEmpty()) return null;
char c = key.charAt(i);
node = node.children.get(c);
}
return node;
}
private void keyCheck(String key) {
if (key == null || key.length() == 0) {
throw new IllegalArgumentException("key must not be empty");
}
}
private static class Node<V> {
Node<V> parent;
HashMap<Character, Node<V>> children;
Character character;
V value;
boolean word; // 是否为单词的结尾(是否为一个完整的单词)
public Node(Node<V> parent) {
this.parent = parent;
}
}
}
Asserts类
package alangeit;
public class Asserts {
public static void test(boolean value) {
try {
if (!value) throw new Exception("测试未通过");
} catch (Exception e) {
e.printStackTrace();
}
}
}
测试
static void test() {
Trie<Integer> trie = new Trie<>();
trie.add("cat", 1);
trie.add("dog", 2);
trie.add("catalog", 3);
trie.add("cast", 4);
trie.add("小码哥", 5);
Asserts.test(trie.size() == 5);
Asserts.test(trie.startsWith("do"));
Asserts.test(trie.startsWith("c"));
Asserts.test(trie.startsWith("ca"));
Asserts.test(trie.startsWith("cat"));
Asserts.test(trie.startsWith("cata"));
Asserts.test(!trie.startsWith("hehe"));
Asserts.test(trie.get("小码哥") == 5);
Asserts.test(trie.remove("cat") == 1);
Asserts.test(trie.remove("catalog") == 3);
Asserts.test(trie.remove("cast") == 4);
Asserts.test(trie.size() == 2);
Asserts.test(trie.startsWith("小"));
Asserts.test(trie.startsWith("do"));
Asserts.test(!trie.startsWith("c"));
}
总结
◼Trie 的优点:搜索前缀的效率主要跟前缀的长度有关
◼Trie 的缺点:需要耗费大量的内存,因此还有待改进
◼更多Trie 相关的数据结构和算法
Double-array Trie、Suffix Tree、Patricia Tree、Crit-bit Tree、AC自动机