人工智能导论·课程学习(1-2讲)

人工智能导论

1-2讲

~课程学习:COOM·人工智能导论

@[toc]——原目录位置



第一讲·概述

1·1发展简史

- 公元前:

  - 古希腊伟大的哲学家、思想家Aristotle(亚里士多德,公元前384-322)提出**三段论**为形式逻辑奠定了基础。

  - 形式逻辑是一切推理活动的最基本的出发点。

- 1936年:图灵制图灵机。

- 1937-1941年:第一台**电子计算机**ABC计算机。奠定物质基础

- 1943年:麦克洛奇、匹慈:M—P模型(早期深度学习模型)

- 1956年:

  - 麦卡锡、香农等人于达特莫斯大学召开了两个月的学术研讨会,讨论机器智能问题。

  - 会上麦卡锡正式提出人工智能(AI,artificial intelligence),标志着一门新兴科学的名称

- 1969年:成立国际人工智能联合会议 (IJACI)

- 中国自1978年开始把“智能模拟”作为国家科学技术发展规划的主要研究课题,并于1981年成立中国人工智能学会。

1·2人工智能的概念

1. 智能

  - 并没有确切的定义,主要流派有:

    - 思维理论:智能的核心是思维

    - 知识阈值理论:智能取决于知识的数量及一般化程度

    - 进化理论:用控制取代知识的表示

  - 本课程所下定义:**智能是知识与智力的总和。**

2. 人类智能的特征包括:感知能力,记忆与思维能力,学习能力,行为能力。

3. 人工智能:用人工的方法在机器(计算机)上实现的智能。

4. 人工智能中通常把**图灵测试**作为衡量机器智能的准则。

  - 不过即使通过图灵测试也不能说明计算机能思维——中文屋思考实验。

5. 研究内容:机器行为,机器感知,机器思维,机器学习

6. 目的:让机器能够**模拟、延伸和扩展人的智能**,以实现某些脑力劳动的机械。


第二讲·一阶谓词逻辑知识表示法


逻辑分类

2·1命题逻辑

==离散数学中有相关概念,但并不一样。==

1. 命题

  - 定义:一个非真即假的称述句。(命题:P/Q/…;真:T;假:F)

  - 注意,命题也可以在一种条件下为真,在另一种条件下为假. ==eg:1+1=10==

2. 命题逻辑

  - 用途:研究命题及命题之间关系的符号逻辑系统

- eg:“P:北京是中华人民共和国的首都”

3. 命题逻辑表示法

  - 缺陷:

    - 无法把它所描述的食物的结构及逻辑特征反映出来——eg:"P:老李是小李的父亲";

    - 也不能把不同事物之间的共同逻辑表述出来——eg:“P:李白是诗人;Q:杜甫也是诗人”

2·2谓词逻辑

1. 谓词

  - 谓词一般形式:P(X~1~,X~2~,…,X~n~)

  - 个体—X~1~ …:,某个独立存在的事物或者某个抽象的概念

    1. 可以是常量:一个或者一组指定的个体。举例如下:

        - "P:老张是一个教师"——一元谓词:Teacher(zhang)

        - "Q:5>3"——二元谓词:Greater(5,3)

        - “L:Smith作为一个工程师为IBM工作”——L(X~1~,X~2~,X~3~):Works(Smith,IBM,Engineer)

    2. 个体是变量(变元):没有指定的一个/一组个体。需要赋值后才能判别真值是TF。举例如下:

        - “P:X<5”——Less(X,5)

    3. 个体是函数:一个个体到另一个个体的映射,==函数关系必真==,举例如下

        - ”P:小李的父亲是教师"——Teacher(Father(小李))

    4. 个体是谓词:

        - “L:Smith作为一个工程师为IBM工作”——二阶谓词/L(Z(X~1~),X~2~,):Works(Engineer(Smith),IBM)

  - 谓词名—P:刻画个体的性质、状态或个体间的关系

  - 注:谓词名/个体名一般用具有意义的英文单词表示,也可以用英文字母、其他符号、中文表示。

2. 连接词

  - ∧:与。eg:”我喜欢音乐和绘画“:Like(I,Music)∧Like(I,Painting)

  - ∨:或。eg:”小李在唱歌或绘画“:Playing(Li,Sing)∨Playing(Li,Paint)

  - ﹁:非。eg:”机器人不在2号房“:﹁In_Room(Robot,R2)

  - →:蕴含或条件。

  - |或者↔:等价或双条件。

表2·2·1:谓词逻辑真值表

3. 量词

  - 全称量词∀:个体域中所有个体。eg:

    - “所有机器人都是灰色的”——(∀X)[Robot(x)]→Color(X,Gray)

  - 存在量词∃:在个体域中存在个体X。eg:

    - “1号房有个物体”——(∃X)In_Room(X,R1)

  - 全称量词和存在量词举例

    - (∀X)(∃Y)F(X,Y):对于个体域中的任何个体X都有存在个体Y,X与Y是朋友

    - (∃X)(∀Y)F(X,Y):个体域中存在个体X,与个体域中的任何个体Y都是朋友

    - (∃X)(∃Y)F(X,Y):个体域中存在个体X与个体Y,X与Y是朋友

    - (∀X)(∀Y)F(X,Y):对于个体域中的任何两个个体X和Y,X和Y都是朋友

4. 谓词公式

  - 原子谓词公式:单个谓词是谓词公式

  - 若A是谓词公式,则﹁A,(∃X)A,(∀X)A也是谓词公式

  - 若A,B是谓词公式,则A∨B,A∧B,A→B,A↔B也都是谓词公式

  - **有限步**应用以上过程生成的公式也是谓词公式

  - 连接词优先级(从高到低):﹁,∧,∨,→,↔

5. 量词的辖域

  - 定义:位于量词后面的单个谓词或者用括弧括起来的谓词公式

  - 约束变元与自由变元:辖域内与量词中同名的变元称为约束变元,不同名的变元称为自由变元

  - 举例如下:

    - (∃X)(P(X,Y)→Q(X,Y))∨R(X,Y)

    - 解释:(P(X,Y)→Q(X,Y)为(∃X)的辖域,辖域内的变元X是受(∃X)约束的,R(X,Y)中的X是自由变元;公式中所有的Y都是自由变元

6. 谓词公式

  - 谓词公式在个体域上的解释:个体域中的实体对[谓词演算表达式中每个常量、变量、谓词和函数符号的]指派。

    - 对于每一个解释,谓词公式都可求处一个真值(T/F)

  - 谓词公式的性质:

    - 永真性;可满足性;不可满足性;等价性

    - P对个体域D上任一解释都为T,则称P在D中永真;若P在任意非空域个体域上永真,则称P永真。

    - 在D中存在至少一个解释使P真值为T,则称P为可满足的,否则称P为不可满足。

  - 谓词公式的永真蕴含

    - P⇒Q:P为Q的前提,Q为P的结论

  - 反证法

    - 在人工智能中,主要使用反证法来训练人工智能。

    - P⇒Q,当且仅当P∧﹁Q↔F,即Q为P的逻辑推理,当且仅当P∧﹁Q是不可满足的。

2.3总结

1. 谓词公式表示知识的步骤:

  - 定义谓词及个体。

  - 给变元赋值。

  - 用连接词连接各谓词,形成谓词公式。

2. 可以用一阶谓词逻辑来表示关系型数据库。

3. 特点:自然性,精确性,严密性,容易实现。

4. 局限性:不能表示不确定的知识,组合爆炸,效率低

5. 应用:

  - 自动问答系统(Green等人研制的QA3系统)

  - 机器人行动规划系统(Fikes等人研制的STRIPS系统)

  - 机器博弈系统(Filman等人研制的FOL系统)

  - 问题求解系统(Kowalski等设计的PS系统)


注:

首发于:CSDN

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,290评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,107评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,872评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,415评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,453评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,784评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,927评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,691评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,137评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,472评论 2 326
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,622评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,289评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,887评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,741评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,977评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,316评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,490评论 2 348

推荐阅读更多精彩内容