6. Faster R-CNN

本文来源于https://www.cnblogs.com/skyfsm/p/6806246.html
https://blog.csdn.net/amor_tila/article/details/78809791

基于深度学习的目标检测技术演进:
R-CNN -> SPP-Net -> Fast-RCNN -> Faster-RCNN -> R-FCN

1.Faster-RCNN结构

Fast R-CNN存在的问题:存在瓶颈:选择性搜索,找出所有的候选框,这个也非常耗时。那我们能不能找出一个更加高效的方法来求出这些候选框呢?
解决:加入一个提取边缘的神经网络,也就说找到候选框的工作也交给神经网络来做了。
做这样的任务的神经网络叫做Region Proposal Network(RPN)。

SPP-Net和Fast-RCNN从特征提取角度,减少了工作量,但依然没解决Selective Search选择候选区域速度慢的问题。
Faster-RCNN 使用RPN代替Selective Search算法,使目标识别实现真正端到端的计算。

具体做法:
  • 将RPN放在最后一个卷积层的后面
  • RPN直接训练得到候选区域

image

Faster-RCNN由两大模块组成:

  1. RPN候选框提取模块
  2. Fast-RCNN检测模块
    其中,RPN是全卷积神经网络,用于提取候选框;Fast-RCNN基于RPN提取的proposal检测并识别propasal中的目标。

2. RPN

RPN的核心思想是使用CNN卷积神经网络直接产生Region Proposal,使用的方法本质上就是滑动窗口(只需在最后的卷积层上滑动一遍),因为anchor机制和边框回归可以得到多尺度多长宽比的Region Proposal。

RPN网络也是全卷积网络(FCN,fully-convolutional network),可以针对生成检测建议框的任务端到端地训练,能够同时预测出object的边界和分数。只是在CNN上额外增加了2个卷积层(全卷积层cls和reg)。

①将每个特征图的位置编码成一个特征向量(256dfor ZF and 512d for VGG)。

②对每一个位置输出一个objectness score和regressedbounds for k个region proposal,即在每个卷积映射位置输出这个位置上多种尺度(3种)和长宽比(3种)的k个(3*3=9)区域建议的物体得分和回归边界。

RPN简介:

  • 在feature map上滑动窗口操作,得到候选区域。
  • 建一个神经网络用于物体分类+框位置的回归。
  • 滑动窗口的位置提供了物体的大体位置信息。
  • 框的回归提供了框更精确的位置。
  • RPN网络输入的特征图和全连接层中的特征图共享计算。
  • RPN的使用,使Faster-RCNN能够在一个网络框架之内完成候选区域、特征提取、分类、定位修正等操作。

因为我们的最终目标是和Fast R-CNN目标检测网络共享计算,所以假设这两个网络共享一系列卷积层。
RPN的具体流程如下:使用一个小网络在最后卷积得到的特征图上进行滑动扫描,这个滑动网络每次与特征图上n*n(论文中n=3)的窗口全连接(图像的有效感受野很大,ZF是171像素,VGG是228像素),然后映射到一个低维向量(256d for ZF / 512d for VGG),最后将这个低维向量送入到两个全连接层,即bbox回归层(reg)和box分类层(cls)。sliding window的处理方式保证reg-layer和cls-layer关联了conv5-3的全部特征空间。

reg层:预测proposal的anchor对应的proposal的(x,y,w,h)

cls层:判断该proposal是前景(object)还是背景(non-object)。

image.png

在上图(RPN框架图)中,要注意,33卷积核的中心点对应原图(re-scale,源代码设置re-scale为6001000)上的位置(点),将该点作为anchor的中心点,在原图中框出多尺度、多种长宽比的anchors。所以,anchor不在conv特征图上,而在原图上。

image.png

上图即为9种anchor图,
image.png
image.png

上图即为Faster-RCNN卷积流程图。原图6001000经CNN卷积后,在CNN最后一层(conv5)得出的是4060大小的特征图。

在RPN网络中,我们需要重点理解其中的anchors概念,Loss fucntions计算方式和RPN层训练数据生成的具体细节。

一种网络,四个损失函数;
  • RPN calssification(anchor good.bad)
  • RPN regression(anchor->propoasal)
  • Fast R-CNN classification(over classes)
  • Fast R-CNN regression(proposal ->box)

image

速度对比

image

Faster R-CNN的主要贡献是设计了提取候选区域的网络RPN,代替了费时的选择性搜索,使得检测速度大幅提高。

3. 优缺点

优点:
RPN使得Faster R-CNN在region proposal阶段只需10 ms,检测速度达到5 f/s (包括所有步骤),并且检测精度也得到提升,达到73.2%。

缺点:

  1. Faster R-CNN仍然使用ROI Pooling,导致之后的网络特征失去平移不变性,影响最终定位准确性;
  2. ROI Pooling后每个区域经过多个全连接层,存在较多重复计算;
  3. Faster R-CNN在特征图上使用锚点框对应原图,而锚点框经过多次下采样操作,对应原图一块较大的区域,导致Faster R-CNN检测小目标的效果并不是很好。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,290评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,107评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,872评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,415评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,453评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,784评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,927评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,691评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,137评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,472评论 2 326
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,622评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,289评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,887评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,741评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,977评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,316评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,490评论 2 348

推荐阅读更多精彩内容