聊聊python的分位数

0 简介

在日常的数据分析中,分位数 是非常重要的一环,在探查数据分布,定义指标中都必不可缺。但 python 里的分位数计算却潜藏了一些坑点,特分享。

1 是什么

1.1 定义

我们先看看百度百科的 分位数 定义:

以最常见的 四分位数 为例:

四分位数(Quartile)也称四分位点,是指在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。多应用于统计学中的箱线图绘制。

第一四分位数 (Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。
第二四分位数 (Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。
第三四分位数 (Q3),又称“较大四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。
第三四分位数与第一四分位数的差距又称四分位距(InterQuartile Range,IQR)。

正如上文所言,四分位数 就是将数据从小到大排成4等分,然后取出3个分割点的数值。百分位数则以此类推,通过分位数 我们可以对数据的分布有更深的了解:

1.2 计算方法

分位数 的定义是很容易理解的,但大部分人不知道的是,分位数的计算方法有两种:

我们依旧以 四分位数 为例

  • n+1 方法

    # n是项数
    Q1 = (n+1) * 0.25
    Q2 = (n+1) * 0.5
    Q3 = (n+1) * 0.75
    

    n+1 算出来的结果会比实际稍高一些

  • 1+(n-1) 方法

    # n是项数
    Q1 = 1 + (n-1)*0.25
    Q2 = 1 + (n-1)*0.5
    Q3 = 1 + (n-1)*0.75
    

    这种算法,预期的结果会比实际低一些

  • n 方法

    传统统计学并没有这种方法,但在实际计算时有时候会需要该方法((_))。毕竟直接取才是最符合逻辑的。

    # n是项数
    Q1 = n * 0.25
    Q2 = n * 0.5
    Q3 = n * 0.75
    

三种方法各有利弊,但结果都可能存在差距,需要与需求方仔细确认到底是哪个计算方法。

2 如何通过python获取?

能满足4分位计算的函数主要有2个:numpy 的 percentile 方法 和 pandas 的 quantile 方法 。但他们的计算方法都是 1+(n-1)方法,我们看个例子:

import pandas as pd
import numpy as np

df = pd.Series([i for i in range(1,11)])
# 使用pd的df.quantile
df.quantile([0.25, 0.5, 0.75]) # 3.25, 5.5, 7.75

#使用np的np.percentile
np.percentile(df, (25,50,75)) # 3.25, 5.5, 7.75

既然没有现成的方法,我们就手写一个 n 的方法。

import pandas as pd
import numpy as np

def quantile_exc(data, n ,ord = 'asc',interpolation='lower'):  # 其中data为数据组,n为第几个百分位数
    """
    data:最好输入pandas的列,例如 data.column
    n:小数百分比
    interpolation:Lower表示向下取整,higher表示向上取整
    """
    import math
    dic = {}
    a = 1
    data = list(np.sort(data))
    if ord == 'asc':
        data = data
    elif ord == 'desc':
        data.reverse()
    for i in data:
        dic[a] = i
        a = a+1
    value = ((a-1)*n)
    if interpolation == 'lower':
        return dic[math.floor(value)]
    elif interpolation == 'higher':
        return dic[math.ceil(value)]

df = pd.Series([i for i in range(1,11)])
quantile_exc(df, 0.25, ord = 'asc', interpolation='lower') #2
quantile_exc(df, 0.5, ord = 'asc', interpolation='lower') #5
quantile_exc(df, 0.75, ord = 'asc', interpolation='lower') #5

PS:其中 interpolation 用于控制向上取整和向下取整。

3 杂谈

百分位的计算是非常常见的数据分析需求,但在实际使用时并没有那么的简单,专业的统计逻辑和""我们以为""的逻辑并不尽然相同。需时时谨慎,校验数据。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容