解决hash冲突的方法

参考文章:解决hash冲突的方法

一)哈希表简介

非哈希表的特点:关键字在表中的位置和它之间不存在一个确定的关系,查找的过程为给定值一次和各个关键字进行比较,查找的效率取决于和给定值进行比较的次数。

    哈希表的特点:关键字在表中位置和它之间存在一种确定的关系。

哈希函数:一般情况下,需要在关键字与它在表中的存储位置之间建立一个函数关系,以f(key)作为关键字为key的记录在表中的位置,通常称这个函数f(key)为哈希函数。

hash : 翻译为“散列”,就是把任意长度的输入,通过散列算法,变成固定长度的输出,该输出就是散列值。

这种转换是一种压缩映射,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。

           简单的说就是一种将任意长度的消息压缩到莫伊固定长度的消息摘要的函数。

hash冲突:就是根据key即经过一个函数f(key)得到的结果的作为地址去存放当前的key value键值对(这个是hashmap的存值方式),但是却发现算出来的地址上已经有人先来了。就是说这个地方要挤一挤啦。这就是所谓的hash冲突啦

二)哈希函数处理冲突的方法

其中 m 为表的长度

对增量di有三种取法:

线性探测再散列   di = 1 , 2 , 3 , ... , m-1

平方探测再散列   di = 1 2 , -12 , 22 , -22 , 32 , -32 , ... , k2 ,  -k2

2)链地址法

先按照ppt上的hash算法:h(key) = key % 7,算出来对应的hash值,这个hash值暂时就决定,当前的这个值,存放在数组的位置。

都算完之后,就可以,按照这个hash值,依次的,把这些数,都放在下面的数组上。然后就有我自己的这个截图。

和上面的ppt推算的是一致的。

这个做法就是Java的HashMap就是这么实现的,简单的解释下,这个HashMap源码的这个链表产生机制。

在put()方法里面,最后部分有个如下的调用。

addEntry(hash, key, value, i);

解释下几个参数的意思:

1,hash:就是根据key算出来的一个值,源码是这么滴--int hash = hash(key);,

这个算出来的这个就相当于是身份证号码,可以唯一确定一个人一样,唯一确定这个map

2,key:key就是我们在往hashmap里面put键值对的时候的key,使用map的时候,不是可以根据key拿到value吗。

3,value:这个同上啦,就是存的键值对的值。

4,i:源码里面是这么滴--int i = indexFor(hash, table.length);实际意思就是这个键值对存放在底层数组的索引下标。

然后这个i,可以对应到ppt上的那个取模之后的值,也就是确定在数组上的下标。

虽然在put的时候,可能会出现扩容的问题,但是在这咱就不考虑这个,只考虑如何生成链表,以及链表上的键值对的顺序。

createEntry(hash, key, value, bucketIndex);

这个方法就是真正的在创建一个节点到数组上。

这几个参数是一样的,和上面解释的一样的意思。

3.再hash法,就是算hashcode的方法不止一个,一个要是算出来重复啦,再用另一个算法去算。反正很多,直到不重复为止咯。大师兄猜的

4.建立一个公共溢出区域,就是把冲突的都放在另一个地方,不在表里面。

总结一下的就是下面的四行字:

1.开放定址法(线性探测再散列,二次探测再散列,伪随机探测再散列)

2.再哈希法

3.链地址法(Java hashmap就是这么做的)

4.建立一个公共溢出区

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 210,978评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 89,954评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,623评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,324评论 1 282
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,390评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,741评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,892评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,655评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,104评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,451评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,569评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,254评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,834评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,725评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,950评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,260评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,446评论 2 348

推荐阅读更多精彩内容