pandas 1

pandas

Transforming a Column

We can use the arithmetic operators to transform a numerical column.

div_1000 = food_info["Iron_(mg)"] / 1000
add_100 = food_info["Iron_(mg)"] + 100
sub_100 = food_info["Iron_(mg)"] - 100
mult_2 = food_info["Iron_(mg)"]*2
sodium_grams = food_info["Sodium_(mg)"] / 1000
sugar_milligrams = food_info["Sugar_Tot_(g)"] * 1000


Performing Math with Multiple Columns

we can transform columns by other columns. When we use an arithmetic operator between two columns (Series objects), pandas will perform that computation in a pair-wise fashion, and return a new Series object.

water_energy = food_info["Water_(g)"] * food_info["Energ_Kcal"]

grams_of_protein_per_gram_of_water = food_info["Protein_(g)"] / food_info["Water_(g)"]

milligrams_of_calcium_and_iron = food_info["Calcium_(mg)"] + food_info["Iron_(mg)"]


Normalizing Columns in a Data Set

While there are many ways to normalize data, one of the simplest ways is called rescaling.

To calculate a column's minimum value, we use the Series.min() method. We can use the equivalent Series.max() method to compute the maximum value.


x' = \frac{x - min(x)} {max(x) - min(x)}

x represents a column and x′ is the new rescaled column.

Instructions

  • Normalize the values in the "Protein_(g)" column, and assign the result to normalized_protein.
  • Normalize the values in the "Lipid_Tot_(g)" column, and assign the result to normalized_fat.
print(food_info["Protein_(g)"][0:5])
max_protein = food_info["Protein_(g)"].max()

normalized_protein = (food_info["Protein_(g)"] - food_info["Protein_(g)"].min()) / (food_info["Protein_(g)"].max() - food_info["Protein_(g)"].min())

normalized_fat = (food_info["Lipid_Tot_(g)"] - food_info["Lipid_Tot_(g)"].min()) / (food_info["Lipid_Tot_(g)"].max() - food_info["Lipid_Tot_(g)"].min())


Creating a New Column

So far, we've assigned the Series object that results from a column transform to a variable. However, we can add it to the DataFrame as a new column instead.

We add bracket notation to specify the name we want for that column, then use the assignment operator (=) to specify the Series object containing the values we want to assign to that column:

iron_grams = food_info["Iron_(mg)"] / 1000  
food_info["Iron_(g)"] = iron_grams

The DataFrame food_info now includes the "Iron_(g)" column, which contains the values from iron_grams.

Instructions

  • Assign the normalized "Protein_(g)" column to a new column named "Normalized_Protein" in food_info.
  • Assign the normalized "Lipid_Tot_(g)" column to a new column named "Normalized_Fat" in food_info.
normalized_protein = (food_info["Protein_(g)"] - food_info["Protein_(g)"].min()) /(food_info["Protein_(g)"].min()- food_info["Protein_(g)"].max())

normalized_fat = (food_info["Lipid_Tot_(g)"] - food_info["Lipid_Tot_(g)"].min()) / (food_info["Lipid_Tot_(g)"].max() - food_info["Lipid_Tot_(g)"].min())

food_info["Normalized_Protein"] = normalized_protein
food_info["Normalized_Fat"] = normalized_fat


Sorting a DataFrame by a Column

DataFrame objects have a sort_values() method that we can use to sort the entire DataFrame.

To sort the DataFrame on the Sodium_(mg) column, pass in the column name to the DataFrame.sort_values() method, and assign the resulting DataFrame to a new variable:

food_info.sort_values("Sodium_(mg)")

By default, pandas will sort the data by the column we specify in ascending order and return a new DataFrame, rather than modifying food_info itself.

# Sorts the DataFrame in-place, rather than returning a new DataFrame.
food_info.sort_values("Sodium_(mg)", inplace=True)

# Sorts by descending order, rather than ascending.
food_info.sort_values("Sodium_(mg)", inplace=True, ascending=False)

Instructions

  • Sort the food_info DataFrame in-place on the Norm_Nutr_Index column in descending order.
food_info["Norm_Nutr_Index"] = 2*food_info["Normalized_Protein"] + (-0.75*food_info["Normalized_Fat"])
food_info.sort_values("Norm_Nutr_Index", inplace=True, ascending=False)


In this mission, we learned how to transform columns, normalize columns, and use the arithmetic operators to create new columns.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容