学好数学,给你的价值反馈可能不仅1个亿,数学将给你更理性,更丰富的视角去观察这个世界!
学好数学最重要的法宝就是对概念的精通。数学以公理和公设为前提,以定义为先导,以逻辑为工具,逐步推演出紧紧围绕在被定义概念周围的各种命题。在这个过程中,推理的艺术笼罩一切,所涉及的概念无处不在。因此,一碰到某个概念,就应该在脑海里浮现出关于它的清晰图像。
既然概念这么重要,为什么许多学生并不把它放在眼里呢?原因之一或许是,背诵定义比理解定义更容易、更轻松。好的教科书中的数学定义,写得非常清楚,也很节约,即没有任何废话,每个字都有用。但要完全理解复杂定义的内涵,并非易事,它需要不停的苦思冥想、绞尽脑汁。
检验自己是否真正搞懂了一个定义,一个妙法就是命令自己写出该定义不满足时的一句陈述。如果写不出来,大概离真懂定义尚有一段距离。
兹举一例。假设读者学过 “ε - δ” 语言的极限定义。让我们先回忆一下这个定义:我们说函数f当x趋向于a时的极限为L,如果任给正数ε,存在正数δ,使得当位于f的定义域内的x满足不等式0 < |x - a| < δ时,不等式|f(x) - L| < ε就成立。那么,“函数在a点的极限不是L”这一现象该怎么陈述呢?
这是关于一个性质不成立的说法。当这个性质比较简单的时候,否定的说法同样简单。比如说,“我是一个学生”的否定叙述就是“我不是一个学生”。然而,对于一个包含了“任给”、“存在”、“当......就”等单词和短语的复杂定义,它的否定语句就不是那么好对付的。这需要开动我们头脑里所有的逻辑机器,挥舞分析的大刀,才能办得到。
只求记忆、不肯思考是许多人学数学时的一大障碍。一些同学早已将上述的极限定义背得滚瓜烂熟,但还是俘获不了对方的芳心,一做起稍有挑战性的极限题就坠入迷雾之中。尤其在需要证明极限不存在的场合,就更加不知所措了。
节选:
丁玖:数学应该怎么学?