R语言对简·奥斯汀作品中人物对话的情感分析

项目背景

客户是一家文学研究机构,他们希望通过对简·奥斯汀作品中人物对话的情感分析,深入了解作品中人物的情感变化和故事情节的发展。因此,他们委托你进行一项情感分析项目,利用“janeaustenr”包中的数据集来构建情感分析模型。

数据来源

客户将提供“janeaustenr”包,该包包含了简·奥斯汀的几部小说(如《傲慢与偏见》、《理智与情感》等)的文本数据。你可以直接使用该包中的数据进行分析。
需求分析

    1. 目标:构建一个情感分析模型,对简·奥斯汀作品中人物对话进行情感分类(正面、负面或中性)。
    1. 数据集:使用“janeaustenr”包中的小说文本数据。
    1. 情感分类:将对话分为正面、负面和中性三类。
    1. 模型要求:
      • 需要考虑文本数据的预处理,如分词、去除停用词、词干提取等。
      • 需要选择合适的特征提取方法,如词袋模型、TF-IDF等。
      • 需要选择合适的分类算法,如朴素贝叶斯、支持向量机、随机森林等,并进行参数调优。
      • 需要对模型进行评估,包括准确率、召回率、F1分数等指标。
      交付成果
    1. R代码:提供完整的R代码,包括数据预处理、特征提取、模型建立和模型评估等步骤。
    1. 模型报告:提供一份详细的模型报告,包括数据预处理的结果、特征提取的方法、模型的性能评估结果等。
    1. 情感分析结果:对简·奥斯汀作品中人物对话进行情感分类,并生成情感分析结果报告,包括对话的情感极性、情感强度等信息。

技术要求

    1. 熟悉R语言:能够熟练使用R语言进行文本数据分析和情感分析。
    1. 了解情感分析:熟悉情感分析的基本原理和步骤,能够独立完成模型的建立和评估。
    1. 文本处理能力:能够处理大规模文本数据,进行数据预处理和特征提取。
    1. 模型评估能力:能够使用合适的评估指标对模型进行评估,并解释评估结果。

按步骤构建整个流程,包括数据加载、预处理、特征提取、模型建立、评估等。以下是基于R语言的实现方案。

1. 加载必要的包

首先,确保安装并加载所需的R包,包括 janeaustenr, tidyverse, tm, textclean, text, caret, e1071 等:

# 安装必要的包
install.packages(c("janeaustenr", "tidyverse", "tm", "textclean", "text", "caret", "e1071"))

# 加载包
library(janeaustenr)
library(tidyverse)
library(tm)
library(textclean)
library(text)
library(caret)
library(e1071)

2. 数据加载与准备

janeaustenr 包中包含了简·奥斯汀的作品数据。我们需要从该包中提取出人物对话的文本,并整理为适合情感分析的格式。

# 加载简·奥斯汀的文本数据
data("austen_books")

# 查看数据结构
head(austen_books)

# 选择对话文本,假设每行代表一段对话
dialogue_data <- austen_books %>% 
  filter(str_detect(text, "[A-Za-z]")) %>%  # 筛选非空行
  select(book, text)  # 保留书名和文本

3. 数据预处理

数据预处理包括去除标点符号、数字、停用词等,进行分词,并进行词干提取。

# 文本清洗函数
clean_text <- function(text){
  text %>%
    tolower() %>%                      # 转小写
    removePunctuation() %>%             # 去除标点符号
    removeNumbers() %>%                 # 去除数字
    removeWords(stopwords("en")) %>%    # 去除英语停用词
    stripWhitespace() %>%               # 去除多余空格
    wordStem()                          # 词干提取
}

# 应用文本清洗
dialogue_data$text_clean <- sapply(dialogue_data$text, clean_text)

# 查看清洗后的结果
head(dialogue_data$text_clean)

4. 特征提取

使用 tm 包的 DocumentTermMatrix (DTM) 或 text 包的 dfm 来提取特征。这里我们将使用 tf-idf (词频-逆文档频率) 作为特征提取方法。

# 创建一个文档-词项矩阵 (Document-Feature Matrix)
corpus <- Corpus(VectorSource(dialogue_data$text_clean))
dtm <- DocumentTermMatrix(corpus, control = list(weighting = weightTfIdf))

# 转换为矩阵
dtm_matrix <- as.matrix(dtm)

# 查看提取的特征
head(dtm_matrix)

5. 情感标签

由于目前数据集中没有情感标签,我们假设可以基于一些预定义的情感词典来标注情感。可以使用 text 包中的情感分析工具,或结合情感词典进行标签分类。

例如,利用 text 包进行情感分析并为每段对话打标签。

# 使用text包进行情感分析
sentiment_scores <- textdata::lexicons$afinn

# 假设情感分析返回一个情感分数(负数为负面,正数为正面,中性为0)
dialogue_data$sentiment <- sapply(dialogue_data$text_clean, function(text){
  score <- sum(sapply(str_split(text, " "), function(word) sentiment_scores$score[sentiment_scores$word == word]))
  return(ifelse(score > 0, "positive", ifelse(score < 0, "negative", "neutral")))
})

# 查看情感标签
head(dialogue_data)

6. 构建模型

我们可以选择常用的分类算法,如朴素贝叶斯、支持向量机(SVM)或随机森林。这里以支持向量机为例。

# 将情感标签转换为因子类型
dialogue_data$sentiment <- factor(dialogue_data$sentiment, levels = c("negative", "neutral", "positive"))

# 划分训练集和测试集
set.seed(123)
trainIndex <- createDataPartition(dialogue_data$sentiment, p = 0.8, list = FALSE)
train_data <- dialogue_data[trainIndex, ]
test_data <- dialogue_data[-trainIndex, ]

# 使用SVM训练模型
svm_model <- svm(sentiment ~ ., data = train_data, kernel = "linear")

# 预测情感标签
predictions <- predict(svm_model, test_data)

# 评估模型
conf_matrix <- confusionMatrix(predictions, test_data$sentiment)
print(conf_matrix)

7. 模型评估

通过 confusionMatrix 函数评估模型的性能,包括准确率、召回率和F1分数等。

# 打印评估结果
conf_matrix

# 提取性能指标
accuracy <- conf_matrix$overall["Accuracy"]
recall <- conf_matrix$byClass["Recall"]
f1_score <- conf_matrix$byClass["F1"]

print(paste("Accuracy:", accuracy))
print(paste("Recall:", recall))
print(paste("F1 Score:", f1_score))

8. 生成情感分析报告

最后,将情感分析结果生成报告,包括每段对话的情感极性和强度。

# 为每段对话生成情感分析报告
sentiment_report <- dialogue_data %>%
  select(book, text, sentiment) %>%
  mutate(sentiment_score = ifelse(sentiment == "positive", 1, ifelse(sentiment == "negative", -1, 0)))

# 输出情感分析报告
write.csv(sentiment_report, "sentiment_analysis_report.csv")

9. 结果展示

根据需求,你可以将情感分析结果可视化,例如使用 ggplot2 展示每本书的情感分布。

# 使用ggplot2绘制情感分布
ggplot(sentiment_report, aes(x = sentiment, fill = sentiment)) +
  geom_bar() +
  facet_wrap(~book) +
  labs(title = "Sentiment Distribution in Jane Austen's Books", x = "Sentiment", y = "Frequency")

总结

通过上述步骤,我们能够从简·奥斯汀的作品中提取人物对话,进行数据预处理、特征提取、情感分析,并利用机器学习模型进行情感分类。最后,我们能够提供模型评估指标以及生成情感分析报告。

这套方案考虑了文本数据的预处理、特征工程、情感分析和模型评估,适应了客户的需求。如果有更多的标注数据或优化空间,可以进一步改进模型和分析方法。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354

推荐阅读更多精彩内容