粒子群算法

简述

粒子群算法就像他的名字,就是一群粒子,每个粒子都在经行搜索,而且搜索行为在不同程度上受其他粒子的影响,同时这些粒子还具备对所经历最佳位置的记忆能力,即其搜索行为在受其他个体影响的同时还受到自身经验的引导。基于独特的搜索机制,粒子群算法首先生成初始种群,即在可行解空间和速度空间随机初始化粒子的速度与位置,其中粒子的位置用于表征问题的可行解,然后通过种群间粒子个体的合作与竞争来求解优化问题。

基础知识

粒子群算法没有比较复杂的公式,它主要是速度大小的计算,在优化问题中,速度的方向都是会受到当前最优解的影响的,经可能像最优解的方向移动。面对不同的优化问题,粒子群算法也会有不同的模型来求解。首先有如下定义,X为随机生成的粒子群,V为随机生成的速度,Pbest为至今每个位置生成的最优个体,gbest为全局最优解

基本定义

基本粒子群算法

基本粒子群算法的速度变化和粒子变化如下式所示

基本粒子群算法

其中c1c2是学习因子,也成为加速常数,r1r2是[0, 1]的随机数,增加了粒子飞行的随机性。速度变化公式右边由三部分组成:第一部分为“惯性”或“动量”部分,反映了粒子的运动“习惯”, 代表粒子有维持自己先前速度的趋势;第二部分为“认知”部分,反映了粒子对自身历史经验的记忆或回忆,代表粒子有向自身历史最佳位置逼近的趋势;第三部分为“社会”部分,反映了粒子间协同合作与知识共享的群体历史经验,代表粒子有向群体或邻域历史最佳位置逼近的趋势。

标准粒子群算法

标准粒子群算法的速度变化和粒子变化如下式所示

标准粒子群

式中惯性权重表示在多大程度上保留原来的速度: w较大,则全局收敛能力较强,局部收敛能力较弱;较小,则局部收敛能力较强,全局收敛能力较弱。当w=1时, 与基本粒子群算法完全一样,表明带惯性权重的粒子群算法是基本粒子群算法的扩展。实验结果表明:w在0.8~1.2之间时,粒子群算法有更快的收敛速度;而当w>1.2时,算法则容易陷入局部极值。当然权重是个随之搜索的进行而变化的,在搜索初期可以较大方便扩散粒子,后前较小,方便粒子收敛。书中也有一个通用的公式
权重变化

式中: Tmax表示 最大进化代数; Wmin表示最小惯性权重; Wmax表示最大惯性权重; t表示当前迭代次数。在大多数的应用中,Wmin = 0.4, Wmax = 0.9

压缩因子粒子群算法

压缩因子粒子群

其中λ为压缩因子的计算如下


压缩因子

离散粒子群算法

离散粒子

其中r为[0, 1]中的随机数

粒子群算法流程

粒子群算法基于“种群”和“进化”的概念,通过个体间的协作与竞争,实现复杂空间最优解的搜索[13],其流程如下:
(1)初始化粒子群,包括群体规模N,每个粒子的位置xi和速度vi
(2)计算每个粒子的适应度值fit[i]。
(3)对每个粒子,用它的适应度值fit[i]和个体极值Pbest(i)比较。如果fit[i] < Pbest (i),则用fit[i]替换掉phest
(4)对每个粒子,用它的适应度值fit[i]和全局极值Sbest比较。如果fit[i]<gbest,则用fit[i]替换gbest。
(5)迭代更新粒子的速度vi和位置xi
(6)进行边界条件处理。
(7)判断算法终止条件是否满足:若是,则结束算法并输出优化结果;否则返回步骤(2)。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,588评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,456评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,146评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,387评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,481评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,510评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,522评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,296评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,745评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,039评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,202评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,901评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,538评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,165评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,415评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,081评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,085评论 2 352

推荐阅读更多精彩内容