盘点当下大热的 7 大 Github 机器学习『创新』项目

学号:20021110074     电院    姓名:梁雪玲

转载自:https://blog.csdn.net/qq_28168421/article/details/101088174

【嵌牛导读】:机器学习目前的研究进展如火如荼,你是否不知该如何下手实践呢?不要慌,本文带你领略最顶尖的机器学习项目。

【嵌牛鼻子】:GitHub机器学习项目,NLP,大数据,计算机视觉

【嵌牛提问】:如何跟上机器学习的步伐?该着手哪些项目?找工作需要具备的实战经验?

【嵌牛正文】:

本文将会分享近期发布的七大GitHub机器学习项目。这些项目广泛覆盖了机器学习的各个领域,包括自然语言处理(NLP)、计算机视觉、大数据等。

最顶尖的Github机器学习项目

1. PyTorch-Transformers(NLP)

传送门: https://github.com/huggingface/pytorch-transformers

自然语言处理(NLP)的力量令人叹服。NLP改变了文本的处理方式,几乎到了无法用语言描述的程度。

在最先进的一系列NLP库中,PyTorch-Transformers出现最晚,却已打破各种NLP任务中已有的一切基准。它最吸引人的地方在于涵盖了PyTorch实现、预训练模型权重及其他重要元素,可以帮助用户快速入门。

运行最先进的模型需要庞大的计算能力。PyTorch-Transformers在很大程度上解决了这个问题,它能够帮助这类人群建立起最先进的NLP模型。

这里有几篇深度剖析PyTorch-Transformers的文章,可以帮助用户了解这一模型(及NLP中预训练模型的概念):

· PyTorch-Transformers:一款可处理最先进NLP的惊人模型库(使用Python)

https://www.analyticsvidhya.com/blog/2019/07/pytorch-transformers-nlp-python/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

· 8个入门NLP最优秀的预训练模型

https://www.analyticsvidhya.com/blog/2019/03/pretrained-models-get-started-nlp/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

· PyTorch——一个简单而强大的深度学习库

https://www.analyticsvidhya.com/blog/2018/02/pytorch-tutorial/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

2. NeuralClassifier (NLP)

传送门: https://github.com/Tencent/NeuralNLP-NeuralClassifier

在现实世界中,文本数据的多标签分类是一个巨大的挑战。早期面对NLP问题时,我们通常处理的是单一标签任务,但在真实生活中却远不是这么简单。

在多标签分类问题中,实例/记录具备多个标签,且每个实例的标签数量并不固定。

NeuralClassifier使我们能够在多层、多标签分类任务中快速实现神经模型。我最喜欢的是NeuralClassifier,提供了各种大众熟知的文本编码器,例如FastText、RCNN、Transformer等等。


用NeuralClassifier可以执行以下分类任务:

· 双层文本分类

· 多层文本分类

· 多标签文本分类

· 多层(多标签)文本分类

以下两篇优秀的文章介绍了究竟什么是多标签分类,以及如何在Python中执行多标签分类:

· 使用NLP预测电影类型——多标签分类的精彩介绍

https://www.analyticsvidhya.com/blog/2019/04/predicting-movie-genres-nlp-multi-label-classification/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

· 使用Python构建你的第一个多标签图像分类模型

https://www.analyticsvidhya.com/blog/2019/04/build-first-multi-label-image-classification-model-python/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

3. TDEngine (大数据)

传送门: https://github.com/taosdata/TDengine

TDEngine数据库在几乎不到一个月的时间内就累积了近10,000个star。继续往下读,你立马就能明白这是为何。

TDEngine是一个开源大数据平台,针对:

· 物联网(IoT)

· 车联网

· 工业物联网

· IT基础架构等等

本质上,TDEngine提供了一整套与数据工程相关的任务,用户可以用极快的速度完成所有这些工作(查询处理速度将提高10倍,计算使用率将降低到1/5)。

目前有一点需要注意——TDEngine仅支持在Linux上执行。TDEngine数据库包含完整的文件资料以及包含代码的入门指南。

建议你阅读这一篇针对数据工程师的综合资源指南:

· 想成为数据工程师?这里列出了入门应看的综合资源

https://www.analyticsvidhya.com/blog/2018/11/data-engineer-comprehensive-list-resources-get-started/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

4. Video Object Removal (计算机视觉)

传送门: https://github.com/zllrunning/video-object-removal

你是否接触过图像数据?计算机视觉是一种十分先进的技术,用于操纵和处理图像的。想要成为计算机视觉专家,图像的目标检测通常被认为是必经之路。

那么视频呢?如果要对几个视频中的目标绘制边界框,虽然看似简单,实际难度却远不止如此,而且目标的动态性会使任务更加复杂。

所以Video Object Removal非常棒,只要在视频中某一目标周围绘制边界框,即可将它删除。就是这么简单!以下是一个范例:

如果你在计算机视觉的世界里还是个小白,这里有两篇能帮助你入门并快速上手的文章:

· 对基础目标检测算法的全面介绍

https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

· 使用深度学习2.0掌握计算机视觉

https://courses.analyticsvidhya.com/courses/computer-vision-using-deep-learning-version2/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

5. Python Autocomplete (编程)

传送门: https://github.com/vpj/python_autocomplete

你一定会爱上Python Autocomplete的。数据科学家的所有工作就是对各种算法进行试验(至少是大多数人),而Python Autocomplete可以利用一个LSTM简单模型自动写完Python代码。

下图中,灰色的部分就是LSTM模型自动填写的代码(结果位于图像底部):

开发人员如是描述:

首先清除Python代码中的注释、字符串和空行,然后进行训练和预测。模型训练的前提是对python代码进行标记化,相比使用字节编码来预测字节,这似乎更为有效。

如果你曾花费(浪费)时间编写一行行单调的Python代码,那么这一模型可能正是你所寻找的。不过它的开发还处于非常早期的阶段,操作中不可避免会出现一些问题。

如果你想知道LSTM到底是什么,请阅读这篇文章中的介绍:

· 深度学习的要点:长短时记忆(LSTM)入门

https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

6. tfpyth–从TensorFlow到PyTorch再到TensorFlow (编程)

传送门: https://github.com/BlackHC/tfpyth

TensorFlow和PyTorch两大模型都坐拥庞大的用户群,但后者的使用率高得惊人,在未来一两年内很可能超过前者。不过请注意:这并不会打击Tensorflow,因为它的地位相当稳固。

所以如果你曾经在TensorFlow中写了一串代码,后来又在PyTorch中写了另一串代码,现在希望将两者结合起来用以训练模型——那么tfpyth框架会是一个好选择。Tfpyth最大的优势就在于用户不需要重写先前写好的代码。

这一项目对tfpyth的使用方法给出了结构严谨的示例,这无疑是对TensorFlow与PyTorch争论的一种重新审视。

安装tfpyth易如反掌:

pip install tfpyth

以下是两篇深度介绍TensorFlow和PyTorch如何运作的文章:

· 深度学习指南:使用Python中的TensorFlow实现神经网络

https://www.analyticsvidhya.com/blog/2016/10/an-introduction-to-implementing-neural-networks-using-tensorflow/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

· PyTorch——一个简单而强大的深度学习库

https://www.analyticsvidhya.com/blog/2018/02/pytorch-tutorial/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

7. MedicalNet

MedicalNet中包含了一个PyTorch项目,该项目将《Med3D:用迁移学习分析3D医学图像》(https://arxiv.org/abs/1904.00625)这篇论文中的想法付诸实践。这一机器学习项目将医学数据集与不同的模态、目标器官和病理结合起来,以构建规模较大的数据集。

众所周知,深度学习模型(通常)需要大量训练数据,而TenCent发布的MedicalNet是一个相当出色的开源项目,希望大家都能尝试使用它。

MedicalNet的开发人员已经发布了四个预训练模型,这些模型基于23个数据集。如果你需要,下文对迁移学习进行了直观的介绍:

· 迁移学习及在深度学习中使用预训练模型的艺术

https://www.analyticsvidhya.com/blog/2017/06/transfer-learning-the-art-of-fine-tuning-a-pre-trained-model/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,718评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,683评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,207评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,755评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,862评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,050评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,136评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,882评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,330评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,651评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,789评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,477评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,135评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,864评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,099评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,598评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,697评论 2 351