由真值表推导出函数表达式:以输入变量中值为0为反变量,值为1为原变量,找出结果为1的那些项。各变量相与,所有项进行相或,即得函数表达式。如 Y = BC + AC + AB
由逻辑图写出函数表达式:根据逻辑符号从输入变量到输出逐级写出表达式,最后代入到输出变量的那个逻辑输入中即得逻辑函数表达式。例:由卡诺图推导出函数表达式:因卡诺图是用最小项的形式来表示逻辑函数。
最小项:在n变量逻辑函数中,若m为包含n个因子的乘积项,且这n个变量均以原变量或反变量的形式在m中出现一次,则称m为该组变量的最小项。如3变量函数的ABC、AB和BC等即为最小项。
最大项:在n变量逻辑函数中,若M为n个变量之和,且这n个变量均以原变量或反变量的形式在M中出现一次,则称M为该组变量的最大项。如3变量函数的A+B+C、++C等。与最小项的编号不同,最大项的编号原变量取0,反变量取1。如上面两个最大项分别对应为、 。
逻辑函数标准形式:最小项之和 或 最大项之积。如F(A,B,C) = ∑(0,3,5,7) 它的含义是下标为0,3,5,7的那些最小项的函数值为1 。又如F(A,B,C) = ∏(1,3,5,6) 它的含义是下标为1,3,5,6的那些最大项的函数值为0 。
最小项与最大项的关系: = 。
逻辑函数化简:项数最少,每项变量最少。利用公式法化简如有:
1)并项法 AB+A = A
2)吸收法 A+AB = A
3)消项法 AB+C+BC = AB+C
4)消因子法 A+B = A+B
5)配项法 A+A = A 及 A+ = 1
约束:对输入变量取值所加的限制称为约束。如三个变量A、B、C分别表示电动机的正转、反转和停止,显然ABC每次取值时只有一个而且必须有一个变量取值为1。即约束条件为 +BC+AC+AB+ABC = 0 。
约束项:约束条件中的最小项即为约束项。也即函数正常取值时恒等于0的那些最小项为约束项。
任意项:不影响电路功能的最小项称为任意项。
无关项:约束项与任意项统称为逻辑函数中的无关项。
无关项对于卡诺图的意义是无关项对应的位置上既可以填入1,也可以填入0 。如要化简函数 Y = C+B+A 约束条件为:AC+ACD+AB+ABD+ABC+ABCD = 0 则写出卡诺图如下: