sentinel降级熔断原理

1 sentinel降级

sentinel降级的处理逻辑由FlowSlot节点进行处理,依赖设置的降级rule,下面是降级rule初始化的例子。

private static void initFlowQpsRule() {
        List<FlowRule> rules = new ArrayList<FlowRule>();
        FlowRule rule1 = new FlowRule();
        rule1.setResource(KEY);
        // set limit qps to 20
        rule1.setCount(20);
        rule1.setGrade(RuleConstant.FLOW_GRADE_QPS);
        rule1.setLimitApp("default");
        rules.add(rule1);
        FlowRuleManager.loadRules(rules);
}

1.1 flowSlot逻辑

flowSlot也是通过entry方法进入,然后资源配置的限流规则进行逐个遍历,有不通过就抛出FlowException。

// FlowSlot
 @Override
 public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,
                      boolean prioritized, Object... args) throws Throwable {
        checkFlow(resourceWrapper, context, node, count, prioritized);

        fireEntry(context, resourceWrapper, node, count, prioritized, args);
    }

    void checkFlow(ResourceWrapper resource, Context context, DefaultNode node, int count, boolean prioritized)
        throws BlockException {
        checker.checkFlow(ruleProvider, resource, context, node, count, prioritized);
    }

  // FlowRuleChecker
   public void checkFlow(Function<String, Collection<FlowRule>> ruleProvider, ResourceWrapper resource,
                          Context context, DefaultNode node, int count, boolean prioritized) throws BlockException {
        if (ruleProvider == null || resource == null) {
            return;
        }
       // 获取资源对应的限流规则,逐个遍历
        Collection<FlowRule> rules = ruleProvider.apply(resource.getName());
        if (rules != null) {
            for (FlowRule rule : rules) {
                if (!canPassCheck(rule, context, node, count, prioritized)) {
                    throw new FlowException(rule.getLimitApp(), rule);
                }
            }
        }
    }

public boolean canPassCheck(/*@NonNull*/ FlowRule rule, Context context, DefaultNode node, int acquireCount,
                                                    boolean prioritized) {
        String limitApp = rule.getLimitApp();
        if (limitApp == null) {
            return true;
        }

        if (rule.isClusterMode()) {
            return passClusterCheck(rule, context, node, acquireCount, prioritized);
        }

        return passLocalCheck(rule, context, node, acquireCount, prioritized);
    }

private static boolean passLocalCheck(FlowRule rule, Context context, DefaultNode node, int acquireCount,
                                          boolean prioritized) {
        // 选择具体的统计节点,按来源统计则选择originNode,按default统计,一般选择对应的clusterNode,来进行判断
        Node selectedNode = selectNodeByRequesterAndStrategy(rule, context, node);
        if (selectedNode == null) {
            return true;
        }

        return rule.getRater().canPass(selectedNode, acquireCount, prioritized);
    }

具体的限流逻辑由TrafficShapingController接口来实现,根据controlBehavior选择具体的实现类。


image.png
private static TrafficShapingController generateRater(/*@Valid*/ FlowRule rule) {
        if (rule.getGrade() == RuleConstant.FLOW_GRADE_QPS) {
            switch (rule.getControlBehavior()) {
                case RuleConstant.CONTROL_BEHAVIOR_WARM_UP:
                    return new WarmUpController(rule.getCount(), rule.getWarmUpPeriodSec(),
                            ColdFactorProperty.coldFactor);
                case RuleConstant.CONTROL_BEHAVIOR_RATE_LIMITER:
                    return new RateLimiterController(rule.getMaxQueueingTimeMs(), rule.getCount());
                case RuleConstant.CONTROL_BEHAVIOR_WARM_UP_RATE_LIMITER:
                    return new WarmUpRateLimiterController(rule.getCount(), rule.getWarmUpPeriodSec(),
                            rule.getMaxQueueingTimeMs(), ColdFactorProperty.coldFactor);
                case RuleConstant.CONTROL_BEHAVIOR_DEFAULT:
                default:
                    // Default mode or unknown mode: default traffic shaping controller (fast-reject).
            }
        }
        return new DefaultController(rule.getCount(), rule.getGrade());
    }

1.2 controller种类和实现逻辑

1.2.1 DefaultController

默认的限流控制器,逻辑很简单,根据grade来取node里线程数或者通过的qps,和设置的count对比。

@Override
    public boolean canPass(Node node, int acquireCount, boolean prioritized) {
        int curCount = avgUsedTokens(node);
        if (curCount + acquireCount > count) {
            // 优先且按qps进行限制的,可以从下个时间段去借用
            if (prioritized && grade == RuleConstant.FLOW_GRADE_QPS) {
                long currentTime;
                long waitInMs;
                currentTime = TimeUtil.currentTimeMillis();
                waitInMs = node.tryOccupyNext(currentTime, acquireCount, count);
                if (waitInMs < OccupyTimeoutProperty.getOccupyTimeout()) {
                    node.addWaitingRequest(currentTime + waitInMs, acquireCount);
                    node.addOccupiedPass(acquireCount);
                    sleep(waitInMs);

                    // PriorityWaitException indicates that the request will pass after waiting for {@link @waitInMs}.
                    throw new PriorityWaitException(waitInMs);
                }
            }
            return false;
        }
        return true;
    }

private int avgUsedTokens(Node node) {
        if (node == null) {
            return DEFAULT_AVG_USED_TOKENS;
        }
        // 线程或qps
        return grade == RuleConstant.FLOW_GRADE_THREAD ? node.curThreadNum() : (int)(node.passQps());
    }

1.2.2 WarmUpController

预热模式,令牌桶算法,起始为maxToken数,桶内令牌数量多,代表当前处理预热模式下,还需要预热,令牌数量小于warmingToken,说明当前已经进入正常模式,不需要预热了。
WarmUpController#construct

private void construct(double count, int warmUpPeriodInSec, int coldFactor) {

        if (coldFactor <= 1) {
            throw new IllegalArgumentException("Cold factor should be larger than 1");
        }
       // 设置的qps限制
        this.count = count;
        // 默认为3
        this.coldFactor = coldFactor;

        // thresholdPermits = 0.5 * warmupPeriod / stableInterval.
        // warningToken = 100; 预热token数目
        warningToken = (int)(warmUpPeriodInSec * count) / (coldFactor - 1);
        // / maxPermits = thresholdPermits + 2 * warmupPeriod /
        // (stableInterval + coldInterval)
        // maxToken = 200,最大token数目
        maxToken = warningToken + (int)(2 * warmUpPeriodInSec * count / (1.0 + coldFactor));

        // slope
        // slope = (coldIntervalMicros - stableIntervalMicros) / (maxPermits
        // - thresholdPermits); 预热斜率,cold时单个时间为coldFactor/count, 正常时单个时间为1 / count。
        slope = (coldFactor - 1.0) / count / (maxToken - warningToken);

    }

WarmUpController#canPass
进行校验,在预热阶段,允许通过的最大qps为warningQps,正常阶段最大为count值。

@Override
    public boolean canPass(Node node, int acquireCount, boolean prioritized) {
        long passQps = (long) node.passQps();

        long previousQps = (long) node.previousPassQps();
        syncToken(previousQps);

        // 开始计算它的斜率
        // 如果进入了警戒线,开始调整他的qps
        long restToken = storedTokens.get();
        if (restToken >= warningToken) {
            long aboveToken = restToken - warningToken;
            // 消耗的速度要比warning快,但是要比慢
            // current interval = restToken*slope+1/count,初始值等于count/coldFactor
            double warningQps = Math.nextUp(1.0 / (aboveToken * slope + 1.0 / count));
            // 小于预热时允许的qps
            if (passQps + acquireCount <= warningQps) {
                return true;
            }
        } else {
            if (passQps + acquireCount <= count) {
                return true;
            }
        }

        return false;
    }

WarmUpController#syncToken
同步计算token数量,桶中原有值小于warningToken,则按正常速率count增加token数。如果之前一个窗口期通过的qps很低,小于count/coldFactor,也加入token,这会加快系统变冷,减缓系统预热完成,说明流量太小了,不足以完成预热。

   protected void syncToken(long passQps) {
        long currentTime = TimeUtil.currentTimeMillis();
        currentTime = currentTime - currentTime % 1000;
        long oldLastFillTime = lastFilledTime.get();
        if (currentTime <= oldLastFillTime) {
            return;
        }

        long oldValue = storedTokens.get();
        // 获取该有的token数量
        long newValue = coolDownTokens(currentTime, passQps);

        if (storedTokens.compareAndSet(oldValue, newValue)) {
            long currentValue = storedTokens.addAndGet(0 - passQps);
            if (currentValue < 0) {
                storedTokens.set(0L);
            }
            lastFilledTime.set(currentTime);
        }

    }

  private long coolDownTokens(long currentTime, long passQps) {
        long oldValue = storedTokens.get();
        long newValue = oldValue;

        // 添加令牌的判断前提条件:
        // 当令牌的消耗程度远远低于警戒线的时候
        if (oldValue < warningToken) {
            newValue = (long)(oldValue + (currentTime - lastFilledTime.get()) * count / 1000);
        } else if (oldValue > warningToken) {
            if (passQps < (int)count / coldFactor) {
                newValue = (long)(oldValue + (currentTime - lastFilledTime.get()) * count / 1000);
            }
        }
        return Math.min(newValue, maxToken);
    }

这里面进行设置的时候,需要注意的是初始qps会是count/coldFactor,同时,设置的预热时间要保证warningToken大于count,不然每次放完令牌后,都会导致进入预热状态,达不到正常状态。

1.2.3 RateLimiterController

限速控制器,可以进行排队,计算出当前请求的耗时时间,算出预期处理时间expectedTime,如果这个时间超出当前时间,超出时间是否大于排队时间,大于的话,进行限流,否则进行sleep,睡醒返回通过。
RateLimiterController#canPass

 @Override
    public boolean canPass(Node node, int acquireCount, boolean prioritized) {
        // Pass when acquire count is less or equal than 0.
        if (acquireCount <= 0) {
            return true;
        }
        // Reject when count is less or equal than 0.
        // Otherwise,the costTime will be max of long and waitTime will overflow in some cases.
        if (count <= 0) {
            return false;
        }

        long currentTime = TimeUtil.currentTimeMillis();
        // Calculate the interval between every two requests.
        long costTime = Math.round(1.0 * (acquireCount) / count * 1000);

        // Expected pass time of this request.
        long expectedTime = costTime + latestPassedTime.get();

        if (expectedTime <= currentTime) {
            // Contention may exist here, but it's okay.
            latestPassedTime.set(currentTime);
            return true;
        } else {
            // Calculate the time to wait.
            long waitTime = costTime + latestPassedTime.get() - TimeUtil.currentTimeMillis();
            if (waitTime > maxQueueingTimeMs) {
                return false;
            } else {
                long oldTime = latestPassedTime.addAndGet(costTime);
                try {
                    waitTime = oldTime - TimeUtil.currentTimeMillis();
                    if (waitTime > maxQueueingTimeMs) {
                        latestPassedTime.addAndGet(-costTime);
                        return false;
                    }
                    // in race condition waitTime may <= 0
                    if (waitTime > 0) {
                        Thread.sleep(waitTime);
                    }
                    return true;
                } catch (InterruptedException e) {
                }
            }
        }
        return false;
    }

1.2.4 WarmUpRateLimiterController

预热排队模式是1.2.2和1.2.3两种模式的结合体,继承了WarmUpController类,代码是两种模式的结合,计算costTime按当前能接收的qps进行计算,预热模式下按warningQps进行计算。

    @Override
    public boolean canPass(Node node, int acquireCount, boolean prioritized) {
        long previousQps = (long) node.previousPassQps();
        syncToken(previousQps);

        long currentTime = TimeUtil.currentTimeMillis();

        long restToken = storedTokens.get();
        long costTime = 0;
        long expectedTime = 0;
        if (restToken >= warningToken) {
            long aboveToken = restToken - warningToken;

            // current interval = restToken*slope+1/count
            double warmingQps = Math.nextUp(1.0 / (aboveToken * slope + 1.0 / count));
            costTime = Math.round(1.0 * (acquireCount) / warmingQps * 1000);
        } else {
            costTime = Math.round(1.0 * (acquireCount) / count * 1000);
        }
        expectedTime = costTime + latestPassedTime.get();

        if (expectedTime <= currentTime) {
            latestPassedTime.set(currentTime);
            return true;
        } else {
            long waitTime = costTime + latestPassedTime.get() - currentTime;
            if (waitTime > timeoutInMs) {
                return false;
            } else {
                long oldTime = latestPassedTime.addAndGet(costTime);
                try {
                    waitTime = oldTime - TimeUtil.currentTimeMillis();
                    if (waitTime > timeoutInMs) {
                        latestPassedTime.addAndGet(-costTime);
                        return false;
                    }
                    if (waitTime > 0) {
                        Thread.sleep(waitTime);
                    }
                    return true;
                } catch (InterruptedException e) {
                }
            }
        }
        return false;
    }

1.3 限流小结

限流可以按qps和线程数两种来进行限流,默认模式为当前统计数值大于count则进行限流。
当为qps时,可以有预热、排队、预热排队的处理模式,对于时延要求没那么高的请求,可以考虑排队,按漏桶算法,去匀速处理请求,进行削峰。
预热模式适用于冷启动的情况,按coldFactor进行流量切分,初始允许通过流量较小,为1/coldFactor。

2 sentinel熔断

熔断逻辑处理由DegradeSlot处理,熔断方式有两种,一种是按慢调用比例,一种是按异常,异常数或者异常比例,对应的接口及实现类如下:


image.png

在达到相应条件后会进行熔断操作,此时状态为open,过了熔断窗口后,会进入half-open状态,进行探测,接下来的请求不为慢调用,或者没有异常,则进入到close状态,关闭熔断。
对应测试代码如下:

private static void initDegradeRule() {
        List<DegradeRule> rules = new ArrayList<>();
        DegradeRule rule = new DegradeRule(KEY)
                .setGrade(CircuitBreakerStrategy.SLOW_REQUEST_RATIO.getType())
                // Max allowed response time
                .setCount(50)
                // Retry timeout (in second)
                .setTimeWindow(10)
                // Circuit breaker opens when slow request ratio > 60%
                .setSlowRatioThreshold(0.6)
                .setMinRequestAmount(100)
                .setStatIntervalMs(20000);
        rules.add(rule);

        DegradeRuleManager.loadRules(rules);
        System.out.println("Degrade rule loaded: " + rules);
    }

2.1 degrade代码实现

DegradeSlot#entry

@Override
    public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,
                      boolean prioritized, Object... args) throws Throwable {
        performChecking(context, resourceWrapper);

        fireEntry(context, resourceWrapper, node, count, prioritized, args);
    }

    void performChecking(Context context, ResourceWrapper r) throws BlockException {
        List<CircuitBreaker> circuitBreakers = DegradeRuleManager.getCircuitBreakers(r.getName());
        if (circuitBreakers == null || circuitBreakers.isEmpty()) {
            return;
        }
        for (CircuitBreaker cb : circuitBreakers) {
            if (!cb.tryPass(context)) {
                throw new DegradeException(cb.getRule().getLimitApp(), cb.getRule());
            }
        }
    }

AbstractCircuitBreaker#tryPass

@Override
    public boolean tryPass(Context context) {
        // Template implementation. 模版实现,关闭直接返回
        if (currentState.get() == State.CLOSED) {
            return true;
        }
        if (currentState.get() == State.OPEN) {
            // 判断是否满足转变为halfOpen的条件
            // For half-open state we allow a request for probing.
            return retryTimeoutArrived() && fromOpenToHalfOpen(context);
        }
        return false;
    }

 protected boolean retryTimeoutArrived() {
        return TimeUtil.currentTimeMillis() >= nextRetryTimestamp;
    }

protected boolean fromOpenToHalfOpen(Context context) {
        if (currentState.compareAndSet(State.OPEN, State.HALF_OPEN)) {
            // 通知注册的状态观察者
            notifyObservers(State.OPEN, State.HALF_OPEN, null);
            Entry entry = context.getCurEntry();
            entry.whenTerminate(new BiConsumer<Context, Entry>() {
                @Override
                public void accept(Context context, Entry entry) {
                    // Note: This works as a temporary workaround for https://github.com/alibaba/Sentinel/issues/1638
                    // Without the hook, the circuit breaker won't recover from half-open state in some circumstances
                    // when the request is actually blocked by upcoming rules (not only degrade rules).
                   // 防止请求被其它rule block掉,一直处于half-open状态。
                    if (entry.getBlockError() != null) {
                        // Fallback to OPEN due to detecting request is blocked
                        currentState.compareAndSet(State.HALF_OPEN, State.OPEN);
                        notifyObservers(State.HALF_OPEN, State.OPEN, 1.0d);
                    }
                }
            });
            return true;
        }
        return false;
    }

DegradeSlot#exit
熔断的exit方法比着其它slot做了很多其它的操作,因为只有业务逻辑处理完,才能知道具体的rt,异常等数据。

    @Override
    public void exit(Context context, ResourceWrapper r, int count, Object... args) {
        Entry curEntry = context.getCurEntry();
        if (curEntry.getBlockError() != null) {
            fireExit(context, r, count, args);
            return;
        }
       // 获取资源对应的熔断器
        List<CircuitBreaker> circuitBreakers = DegradeRuleManager.getCircuitBreakers(r.getName());
        if (circuitBreakers == null || circuitBreakers.isEmpty()) {
            fireExit(context, r, count, args);
            return;
        }

        if (curEntry.getBlockError() == null) {
            // passed request 遍历配置的熔断器
            for (CircuitBreaker circuitBreaker : circuitBreakers) {
                circuitBreaker.onRequestComplete(context);
            }
        }

        fireExit(context, r, count, args);
    }

熔断的主要实现逻辑在circuitBreaker.onRequest,下面分析下具体熔断器的实现。

2.2 circuitBreaker的实现

2.2.1 ResponseTimeCircuitBreaker实现

根据慢调用比例进行请求调用的熔断,具体实现如下:
ResponseTimeCircuitBreaker#onRequestComplete

@Override
    public void onRequestComplete(Context context) {
        // 慢请求计数器
        SlowRequestCounter counter = slidingCounter.currentWindow().value();
        Entry entry = context.getCurEntry();
        if (entry == null) {
            return;
        }
        long completeTime = entry.getCompleteTimestamp();
        if (completeTime <= 0) {
            completeTime = TimeUtil.currentTimeMillis();
        }
        // 计算请求耗时
        long rt = completeTime - entry.getCreateTimestamp();
        if (rt > maxAllowedRt) {
            counter.slowCount.add(1);
        }
        counter.totalCount.add(1);

        handleStateChangeWhenThresholdExceeded(rt);
    }
   
   private void handleStateChangeWhenThresholdExceeded(long rt) {
        if (currentState.get() == State.OPEN) {
            return;
        }
        // half-open时,进行探测决定改为open或者close
        if (currentState.get() == State.HALF_OPEN) {
            // In detecting request
            // TODO: improve logic for half-open recovery
            if (rt > maxAllowedRt) {
                fromHalfOpenToOpen(1.0d);
            } else {
                fromHalfOpenToClose();
            }
            return;
        }

        List<SlowRequestCounter> counters = slidingCounter.values();
        long slowCount = 0;
        long totalCount = 0;
        // 各窗口相加
        for (SlowRequestCounter counter : counters) {
            slowCount += counter.slowCount.sum();
            totalCount += counter.totalCount.sum();
        }
        if (totalCount < minRequestAmount) {
            return;
        }
        double currentRatio = slowCount * 1.0d / totalCount;
        if (currentRatio > maxSlowRequestRatio) {
           // 熔断器打开
            transformToOpen(currentRatio);
        }
        if (Double.compare(currentRatio, maxSlowRequestRatio) == 0 &&
                Double.compare(maxSlowRequestRatio, SLOW_REQUEST_RATIO_MAX_VALUE) == 0) {
            transformToOpen(currentRatio);
        }
    }

AbstractCircuitBreaker#transformToOpen

protected void transformToOpen(double triggerValue) {
        State cs = currentState.get();
        switch (cs) {
            case CLOSED:
                fromCloseToOpen(triggerValue);
                break;
            case HALF_OPEN:
                fromHalfOpenToOpen(triggerValue);
                break;
            default:
                break;
        }
    }

protected boolean fromCloseToOpen(double snapshotValue) {
        State prev = State.CLOSED;
        if (currentState.compareAndSet(prev, State.OPEN)) {
            updateNextRetryTimestamp();

            notifyObservers(prev, State.OPEN, snapshotValue);
            return true;
        }
        return false;
    }

protected boolean fromHalfOpenToOpen(double snapshotValue) {
        if (currentState.compareAndSet(State.HALF_OPEN, State.OPEN)) {
            updateNextRetryTimestamp();
            notifyObservers(State.HALF_OPEN, State.OPEN, snapshotValue);
            return true;
        }
        return false;
    }
// 通知状态监听者
private void notifyObservers(CircuitBreaker.State prevState, CircuitBreaker.State newState, Double snapshotValue) {
        for (CircuitBreakerStateChangeObserver observer : observerRegistry.getStateChangeObservers()) {
            observer.onStateChange(prevState, newState, rule, snapshotValue);
        }
    }

2.2.2 ExceptionCircuitBreaker实现

按异常数或异常比例决定是否要进行熔断。

 @Override
    public void onRequestComplete(Context context) {
        Entry entry = context.getCurEntry();
        if (entry == null) {
            return;
        }
        Throwable error = entry.getError();
        SimpleErrorCounter counter = stat.currentWindow().value();
        if (error != null) {
            counter.getErrorCount().add(1);
        }
        counter.getTotalCount().add(1);

        handleStateChangeWhenThresholdExceeded(error);
    }

   private void handleStateChangeWhenThresholdExceeded(Throwable error) {
        if (currentState.get() == State.OPEN) {
            return;
        }
        // 探测操作
        if (currentState.get() == State.HALF_OPEN) {
            // In detecting request
            if (error == null) {
                fromHalfOpenToClose();
            } else {
                fromHalfOpenToOpen(1.0d);
            }
            return;
        }
        
        List<SimpleErrorCounter> counters = stat.values();
        long errCount = 0;
        long totalCount = 0;
        for (SimpleErrorCounter counter : counters) {
            errCount += counter.errorCount.sum();
            totalCount += counter.totalCount.sum();
        }
        if (totalCount < minRequestAmount) {
            return;
        }
        double curCount = errCount;
        if (strategy == DEGRADE_GRADE_EXCEPTION_RATIO) {
            // Use errorRatio 异常比例
            curCount = errCount * 1.0d / totalCount;
        }
        if (curCount > threshold) {
            transformToOpen(curCount);
        }
    }

2.3 熔断小结

熔断操作依赖于熔断器CircuitBreaker实现,支持慢调用比例和异常两种,其中异常又分为按异常数和异常比例两种方式,熔断器有独立的counter,状态有open, half-open,close三种,熔断可以用在调用其他子系统时,避免因其它子系统出现异常,而拖垮系统,可以用在三方接口调用中。

3 整体总结

sentinel主要的应用场景也就是限流和熔断,对应到我们具体的业务中,限流的直接拒绝可以保护大流量系统不被压垮,而预热可以解决冷启动问题,但这种解决方式会导致有部分流量被流控,比着从负载均衡的角度进行流量分配要差一些,请求排队可以用于响应时间要求没那么高的场景。
线程数限流的话,可以起到保护整体业务的作用,避免因单一接口流量过高而将线程池耗尽。
熔断的话主要是避免依赖服务出现问题拖垮整体系统,之前有考虑过触达系统错误过多时,通过异常数降级为异步请求,但这样的问题是整体流量都进不来了,得不偿失,但可以用在调用三方接口上,避免接口因三方接口响应慢而变慢,这个是没什么问题的。

参考文章

3. Sentinel源码分析— QPS流量控制是如何实现的
Sentinel源码分析(五) - 熔断降级

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容